Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nanopatterning Si(111) surfaces as a selective surface-chemistry route

Abstract

Using wet-chemical self-assembly, we demonstrate that standard surface reactions can be markedly altered. Although HF etching of Si surfaces is known to produce H-terminated surfaces, we show that up to 30% of a monolayer of stable Si–F bonds can be formed on atomically smooth Si(111) surfaces on HF reaction, when chemically isolated Si atoms are the target of the reaction. Similarly, 30% Si–OH termination can be achieved by immersion of the partially covered F–Si(111) surface in water without oxidation of the underlying Si substrate. Such reactions are possible when H-terminated (111)-oriented Si surfaces are initially uniformly patterned with methoxy groups. These findings are contrary to the knowledge built over the past twenty years and highlight the importance of steric interactions at surfaces and the possibility to stabilize products at surfaces that cannot be obtained on chemically homogeneous surfaces.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transmission infrared absorption spectra.
Figure 2: Overview of the chemical reactions investigated in this work.
Figure 3: Si–H stretch frequencies as a function of the number of fluorine atoms around SiH.
Figure 4: A two-dimensional model schematically representing the sterically constrained model of etching.
Figure 5: Transmission infrared absorption spectrum for a 30% Si–OH-terminated surface on reaction with DMCS.
Figure 6: Transmission infrared absorption spectra.

Similar content being viewed by others

References

  1. Nicollian, E. H. & Goetzberger, A. Si–SiO2 interface—electrical properties as determined by the metal–insulator–silicon conductance technique. Bell Syst. Tech. J. 46, 1055–1133 (1967).

    Article  CAS  Google Scholar 

  2. Green, M. A. Effects of pinholes, oxide traps, and surface-states on MIS solar cells. Appl. Phys. Lett. 33, 178–180 (1978).

    Article  CAS  Google Scholar 

  3. Eades, W. D. & Swanson, R. M. Calculation of surface generation and recombination velocities at the Si–SiO2 interface. J. Appl. Phys. 58, 4267–4276 (1985).

    Article  CAS  Google Scholar 

  4. Yablonovitch, E., Swanson, R. M., Eades, W. D. & Weinberger, B. R. Electron–hole recombination at the Si–SiO2 interface. Appl. Phys. Lett. 48, 245–247 (1986).

    Article  CAS  Google Scholar 

  5. Sze, S. M. Physics of Semiconductor Devices (Wiley, 1981).

    Google Scholar 

  6. Yablonovitch, E., Allara, D. L., Chang, C. C., Gmitter, T. & Bright, T. B. Unusually low surface-recombination velocity on silicon and germanium surfaces. Phys. Rev. Lett. 57, 249–252 (1986).

    Article  CAS  Google Scholar 

  7. Janshoff, A. et al. Macroporous p-type silicon Fabry–Perot layers. Fabrication, characterization, and applications in biosensing. J. Am. Chem. Soc. 120, 12108–12116 (1998).

    Article  CAS  Google Scholar 

  8. Waggoner, P. S. & Craighead, H. G. Micro- and nanomechanical sensors for environmental, chemical, and biological detection. Lab Chip 7, 1238–1255 (2007).

    Article  CAS  Google Scholar 

  9. Hines, M. A. In search of perfection: Understanding the highly defect-selective chemistry of anisotropic etching. Annu. Rev. Phys. Chem. 54, 29–56 (2003).

    Article  CAS  Google Scholar 

  10. Lewis, N. S. & Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006).

    Article  CAS  Google Scholar 

  11. Dhayal, M., So, C., Choi, J. S. & Jun, J. Control of bio-MEMS surface chemical properties in micro fluidic devices for biological applications. J. Nanosci. Nanotech. 6, 3494–3498 (2006).

    Article  CAS  Google Scholar 

  12. Chazalviel, J. N. Surface methoxylation as the key factor for the good performance of n-Si/methanol photoelectrochemical cells. J. Electroanal. Chem. 233, 37–48 (1987).

    Article  CAS  Google Scholar 

  13. Buriak, J. M. Organometallic chemistry on silicon surfaces: Formation of functional monolayers bound through Si–C bonds. Chem. Commun. 1051–1060 (1999).

  14. Wayner, D. D. M. & Wolkow, R. A. Organic modification of hydrogen terminated silicon surfaces. J. Chem. Soc. 2, 23–34 (2002).

    Google Scholar 

  15. Tan, M. X. et al. Progress in Inorganic Chemistry Vol. 41, 21–144 (Wiley, 1994).

    Google Scholar 

  16. Maiolo, J. R. et al. High aspect ratio silicon wire array photoelectrochemical cells. J. Am. Chem. Soc. 129, 12346–12347 (2007).

    Article  CAS  Google Scholar 

  17. Maboudian, R. & Carraro, C. Surface chemistry and tribology of MEMS. Annu. Rev. Phys. Chem. 55, 35–54 (2004).

    Article  CAS  Google Scholar 

  18. Kolasinski, K. W. The mechanism of Si etching in fluoride solutions. Phys. Chem. Chem. Phys. 5, 1270–1278 (2003).

    CAS  Google Scholar 

  19. Higashi, G. S., Becker, R. S., Chabal, Y. J. & Becker, A. J. Comparison of Si(111) surfaces prepared using aqueous-solutions of NH4F versus HF. Appl. Phys. Lett. 58, 1656–1658 (1991).

    Article  CAS  Google Scholar 

  20. Dumas, P., Chabal, Y. J. & Jakob, P. Morphology of hydrogen-terminated Si(111) and Si(100) surfaces upon etching in HF and buffered-HF solutions. Surf. Sci. 270, 867–878 (1992).

    Article  Google Scholar 

  21. Allongue, P., Kieling, V. & Gerischer, H. Etching mechanism and atomic-structure of H–Si(111) surfaces prepared in NH4F. Electrochim. Acta 40, 1353–1360 (1995).

    Article  CAS  Google Scholar 

  22. Michalak, D. J., Gstrein, F. & Lewis, N. S. Interfacial energetics of silicon in contact with 11 M NH4F(aq), buffered HF(aq), 27 m HF(aq), and 18 M H2SO4 . J. Phys. Chem. C 111, 16516–16532 (2007).

    Article  CAS  Google Scholar 

  23. Michalak, D. J., Gstrein, F. & Lewis, N. S. The role of band bending in affecting the surface recombination velocities for Si(111) in contact with aqueous acidic electrolytes. J. Phys. Chem. C 112, 5911–5921 (2008).

    Article  CAS  Google Scholar 

  24. Luo, H. H. & Chidsey, C. E. D. D-Si(111)(1×1) surface for the study of silicon etching in aqueous solutions. Appl. Phys. Lett. 72, 477–479 (1998).

    Article  CAS  Google Scholar 

  25. Ricca, A. & Bauschlicher, C. W. Accurate D0 values for SiF and SiF+. Chem. Phys. Lett. 287, 239–242 (1998).

    Article  CAS  Google Scholar 

  26. Ubara, H., Imura, T. & Hiraki, A. Formation of Si–H bonds on the surface of microcrystalline silicon covered with SiOx by HF treatment. Solid State Commun. 50, 673–673 (1984).

    CAS  Google Scholar 

  27. Trucks, G. W., Raghavachari, K., Higashi, G. S. & Chabal, Y. J. Mechanism of HF etching of silicon surfaces: A theoretical understanding of hydrogen passivation. Phys. Rev. Lett. 65, 504–507 (1990).

    Article  CAS  Google Scholar 

  28. Zhang, R. Q., Zhao, Y. L. & Teo, B. K. Fluorination-induced back-bond weakening and hydrogen passivation on HF-etched Si surfaces. Phys. Rev. B 69, 1253191–1253198 (2004).

    Google Scholar 

  29. Higashi, G. S., Chabal, Y. J., Trucks, G. W. & Raghavachari, K. Ideal hydrogen termination of the Si-(111) surface. Appl. Phys. Lett. 56, 656–658 (1990).

    Article  CAS  Google Scholar 

  30. Chabal, Y. J., Higashi, G. S. & Small, R. J. in Handbook of Silicon Wafer Cleaning Technology (eds Reinhardt, K. A. & Kern, W.) (William Andrew, 2007).

    Google Scholar 

  31. Chabal, Y. J. & Christman, S. B. Evidence of dissociation of water on the Si(100)2×1 Surface. Phys. Rev. B 29, 6974–6976 (1984).

    Article  CAS  Google Scholar 

  32. Chabal, Y. J. Hydride formation on the Si(100):H2O surface. Phys. Rev. B 29, 3677–3680 (1984).

    Article  CAS  Google Scholar 

  33. Michalak, D. J., Amy, S. R., Esteve, A. & Chabal, Y. J. Investigation of the chemical purity of silicon surfaces reacted with liquid methanol. J. Phys. Chem. C 112, 11907–11919 (2008).

    Article  CAS  Google Scholar 

  34. Bateman, J. E., Eagling, R. D., Horrocks, B. R. & Houlton, A. A deuterium labeling, FTIR, and ab initio investigation of the solution-phase thermal reactions of alcohols and alkenes with hydrogen-terminated silicon surfaces. J. Phys. Chem. B 104, 5557–5565 (2000).

    Article  CAS  Google Scholar 

  35. Warntjes, M., Vieillard, C., Ozanam, F. & Chazalviel, J. N. Electrochemical methoxylation of porous silicon surface. J. Electrochem. Soc. 142, 4138–4142 (1995).

    Article  CAS  Google Scholar 

  36. Michalak, D. J., Rivillon, S., Chabal, Y. J., Esteve, A. & Lewis, N. S. Infrared spectroscopic investigation of the reaction of hydrogen-terminated, (111)-oriented, silicon surfaces with liquid methanol. J. Phys. Chem. B 110, 20426–20434 (2006).

    Article  CAS  Google Scholar 

  37. Solares, S. D., Michalak, D. J., Goddard, W. A. & Lewis, N. S. Theoretical investigation of the structure and coverage of the Si(111)–OCH3 surface. J. Phys. Chem. B 110, 8171–8175 (2006).

    Article  CAS  Google Scholar 

  38. Ferguson, G. A., Rivillon, S., Chabal, Y. J. & Raghavachari, K. The structure and vibrational spectrum of the Si(111)–H/Cl surface. J. Phys. Chem. C (in the press).

  39. Watanabe, S. & Shigeno, M. Fluorine adsorption and etching on Si(111):SiH surface during immersion in HF solution. Japan. J. Appl. Phys. 31, 1702–1708 (1992).

    Article  CAS  Google Scholar 

  40. Struck, L. M. et al. Vibrational study of silicon oxidation: H2O on Si(100). Surf. Sci. 380, 444–454 (1996).

    Article  Google Scholar 

  41. Graf, D., Grundner, M. & Schulz, R. Reaction of water with hydrofluoric acid treated silicon(111) and (100) surfaces. J. Vac. Sci. Technol. A 7, 808–813 (1989).

    Article  Google Scholar 

  42. Burrows, V. A. & Yota, J. A surface IR study of inorganic film formation GaAs, silicon and germanium by aqueous NH4F, and HF. Thin Solid Films 193–194, 371–381 (1990).

    Article  Google Scholar 

  43. Chabal, Y. J. Infrared Study of the chemisorption of hydrogen and water on vicinal Si(100)-2×1 surfaces. J. Vac. Sci. Technol. A 3, 1448–1451 (1985).

    Article  CAS  Google Scholar 

  44. Ho, M.-T. et al. In situ infrared spectroscopy of hafnium oxide growth on hydrogen-terminated silicon surfaces by atomic layer deposition. Appl. Phys. Lett. 87, 133103 (2005).

    Article  Google Scholar 

  45. Chabal, Y. J. Surface infrared-spectroscopy. Surf. Sci. Rep. 8, 211–357 (1988).

    Article  CAS  Google Scholar 

  46. Aureau, D., Rappich, J., Allongue, P., Ozanam, F. & Chazalviel, J. N. In-situ monitoring of the electronic properties and the pH stability of grafted Si(111) using photoluminescene, surface photovoltage, interface capacitance and FTIR measurements. J. Electroanal. Chem. (in the press).

Download references

Acknowledgements

We acknowledge the support of the National Science Foundation, through grant CHE-0415652 at Rutgers and UT Dallas, and through the US-France cooperative research programme (NSF-INT-0341053) for facilitating the international collaboration with the LAAS at Toulouse, and associated CALMIP computer resources. We are also grateful for a long-time collaboration and stimulating discussions with N. Lewis at Caltech, to B. Yakshinskiy and the late T. Madey at Rutgers for help with the XPS experiments, and to A. Malko and E. Danilov at UT Dallas for help with photoluminescence experiments. We also acknowledge J.-F. Veyan at UT Dallas, and J. Ballard and J. Randall at Zyvex Labs for preliminary low-energy electron diffraction and scanning tunnelling microscopy data.

Author information

Authors and Affiliations

Authors

Contributions

D.J.M. conceived and realized the bulk of the experiments, collaborating actively with S.R.A. M.D. carried out the initial ALD experiments. S.R.A. carried out studies of DMCS reaction. D.A. completed many of the infrared and XPS experiments and carried out all contact angle and photoluminescence experiments. A.E. carried out the theoretical work. Y.J.C. supervised and sustained this work during its development and fruition over the past five years.

Corresponding author

Correspondence to Yves J. Chabal.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 647 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michalak, D., Amy, S., Aureau, D. et al. Nanopatterning Si(111) surfaces as a selective surface-chemistry route. Nature Mater 9, 266–271 (2010). https://doi.org/10.1038/nmat2611

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2611

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing