Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Aharonov–Bohm interference in topological insulator nanoribbons

Abstract

Topological insulators represent unusual phases of quantum matter with an insulating bulk gap and gapless edges or surface states. The two-dimensional topological insulator phase was predicted in HgTe quantum wells1 and confirmed by transport measurements2. Recently, Bi2Se3 and related materials have been proposed as three-dimensional topological insulators with a single Dirac cone on the surface3,4, protected by time-reversal symmetry5,6,7. The topological surface states have been observed by angle-resolved photoemission spectroscopy experiments4,8. However, few transport measurements9 in this context have been reported, presumably owing to the predominance of bulk carriers from crystal defects or thermal excitations10. Here we show unambiguous transport evidence of topological surface states through periodic quantum interference effects in layered single-crystalline Bi2Se3 nanoribbons, which have larger surface-to-volume ratios than bulk materials and can therefore manifest surface effects. Pronounced Aharonov–Bohm oscillations11 in the magnetoresistance clearly demonstrate the coherent propagation of two-dimensional electrons around the perimeter of the nanoribbon surface, as expected from the topological nature of the surface states. The dominance of the primary h/e oscillation, where h is Planck’s constant and e is the electron charge, and its temperature dependence demonstrate the robustness of these states. Our results suggest that topological insulator nanoribbons afford promising materials for future spintronic devices at room temperature12.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure and characterization of the Bi2Se3 nanoribbons.
Figure 2: Aharonov–Bohm oscillations of the topological surface states.
Figure 3: Temperature dependence of the Aharonov–Bohm oscillations.
Figure 4: Magnetoresistance of two more Bi2Se3 nanoribbons.

Similar content being viewed by others

References

  1. Bernevig, B. A., Hughes, T. L. & Zhang, S. C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    Article  CAS  Google Scholar 

  2. König, M. et al. Quantum spin hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

    Article  Google Scholar 

  3. Zhang, H. et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nature Phys. 5, 438–442 (2009).

    Article  CAS  Google Scholar 

  4. Xia, Y. et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nature Phys. 5, 398–402 (2009).

    Article  CAS  Google Scholar 

  5. Fu, L., Kane, C. L. & Mele, E. J. Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007).

    Article  Google Scholar 

  6. Moore, J. E. & Balents, L. Topological invariants of time-reversal-invariant band structures. Phys. Rev. B 75, 121306 (2007).

    Article  Google Scholar 

  7. Qi, X. L., Hughes, T. L. & Zhang, S. C. Topological field theory of time-reversal invariant insulators. Phys. Rev. B 78, 195424 (2008).

    Article  Google Scholar 

  8. Chen, Y. L. et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3 . Science 325, 178–181 (2009).

    Article  CAS  Google Scholar 

  9. Taskin, A. A. & Ando, Y. Quantum oscillations in a topological insulator Bi1−xSbx . Phys. Rev. B 80, 085303 (2009).

    Article  Google Scholar 

  10. Fu, L. & Kane, C. L. Topological insulators with inversion symmetry. Phys. Rev. B 76, 045302 (2007).

    Article  Google Scholar 

  11. Aharonov, Y. & Bohm, D. Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485–491 (1959).

    Article  Google Scholar 

  12. Raghu, S., Chung, S. B., Qi, X. L. & Zhang, S. C. Collective modes of a helical liquid. Preprint at <http://arxiv.org/abs/0909.2477> (2009).

  13. Bernevig, B. A. & Zhang, S. C. Quantum spin Hall effect. Phys. Rev. Lett. 96, 106802 (2006).

    Article  Google Scholar 

  14. Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).

    Article  CAS  Google Scholar 

  15. Hsieh, D. et al. A topological Dirac insulator in a quantum spin Hall phase. Nature 452, 970–974 (2008).

    Article  CAS  Google Scholar 

  16. Mishra, S. K., Satpathy, S. & Jepsen, O. Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide. J. Phys. Condens. Matter 9, 461–470 (1997).

    Article  CAS  Google Scholar 

  17. Qi, X. L., Li, R. D., Zang, J. D. & Zhang, S. C. Inducing a magnetic monopole with topological surface states. Science 323, 1184–1187 (2009).

    Article  CAS  Google Scholar 

  18. Fu, L. & Kane, C. L. Superconducting proximity effect and majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008).

    Article  Google Scholar 

  19. Ando, T., Fowler, A. B. & Stern, F. Electronic properties of two-dimensional systems. Rev. Mod. Phys. 54, 437–672 (1982).

    Article  CAS  Google Scholar 

  20. Aronov, A. G. & Sharvin, Y. V. Magnetic-flux effects in disordered conductors. Rev. Mod. Phys. 59, 755–779 (1987).

    Article  Google Scholar 

  21. Hyde, G. R., Beale, H. A., Spain, I. L. & Woollam, J. A. Electronic properties of Bi2Se3 crystals. J. Phys. Chem. Solids 35, 1719–1728 (1974).

    Article  CAS  Google Scholar 

  22. Morales, A. M. & Lieber, C. M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279, 208–211 (1998).

    Article  CAS  Google Scholar 

  23. Wyckoff, R. W. G. Crystal Structures (Krieger, 1986).

    Google Scholar 

  24. Lee, P. A. & Stone, A. D. Universal conductance fluctuations in metals. Phys. Rev. Lett. 55, 1622–1625 (1985).

    Article  CAS  Google Scholar 

  25. Hikami, S., Larkin, A. I. & Nagaoka, Y. Spin–orbit interaction and magnetoresistance in the 2 dimensional random system. Prog. Theor. Phys. 63, 707–710 (1980).

    Google Scholar 

  26. Huber, T. E., Celestine, K. & Graf, M. J. Magnetoquantum oscillations and confinement effects in arrays of 270-nm-diameter bismuth nanowires. Phys. Rev. B 67, 245317 (2003).

    Article  Google Scholar 

  27. Berggren, K. F., Thornton, T. J., Newson, D. J. & Pepper, M. Magnetic depopulation of 1D subbands in a narrow 2D electron gas in a GaAs:AlGaAs heterojunction. Phys. Rev. Lett. 57, 1769–1772 (1986).

    Article  CAS  Google Scholar 

  28. Altshuler, B. L., Aronov, A. G. & Spivak, B. Z. The Aharonov–Bohm effect in disordered conductors. Jetp Lett. 33, 94–97 (1981).

    Google Scholar 

  29. Bachtold, A. et al. Aharonov–Bohm oscillations in carbon nanotubes. Nature 397, 673–675 (1999).

    Article  CAS  Google Scholar 

  30. Washburn, S., Umbach, C. P., Laibowitz, R. B. & Webb, R. A. Temperature dependence of the normal-metal Aharonov–Bohm effect. Phys. Rev. B 32, 4789–4792 (1985).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank D. Goldhaber-Gordon, K. A. Moler, J. Analytis and J. Maciejko for the helpful discussion. Y.C. acknowledges the support from the King Abdullah University of Science and Technology (KAUST) Investigator Award (No. KUS-l1-001-12). H.P. acknowledges the support from MOST (2007CB936203). K.L. acknowledges the KAUST Postdoctoral Fellowship support No. KUS-F1-033-02. Y.L.C. and Z.X.S. acknowledge the support from the Department of Energy, Office of Basic Energy Sciences under contract DE-AC02-76SF00515.

Author information

Authors and Affiliations

Authors

Contributions

H.P., K.L. and Y.C. conceived and designed the experiments. H.P., D.K. and S.M. carried out the synthesis, structural characterization and device fabrication. K.L., H.P., S.M. and D.K. carried out the transport measurements and analyses. Y.L.C., and X.Q. assisted in experimental work and theoretical analysis. All authors contributed to the scientific planning and discussions. H.P., K.L., Z.X.S., S.C.Z. and Y.C. contributed to the preparation and discussion of the manuscript.

Corresponding author

Correspondence to Yi Cui.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Informaion

Supplementary Informaion (PDF 622 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, H., Lai, K., Kong, D. et al. Aharonov–Bohm interference in topological insulator nanoribbons. Nature Mater 9, 225–229 (2010). https://doi.org/10.1038/nmat2609

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2609

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing