Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Three-dimensional jamming and flows of soft glassy materials

Abstract

Various disordered dense systems, such as foams, gels, emulsions and colloidal suspensions, undergo a jamming transition from a liquid state (they flow) to a solid state below a yield stress1. Their structure, which has been thoroughly studied with powerful means of three-dimensional characterization2,3,4,5,6, shows some analogy with that of glasses1,7,8, which led to them being named soft glassy materials9. However, despite its importance for geophysical and industrial applications10,11, their rheological behaviour10,12, and its microscopic origin1,13, is still poorly known, in particular because of its nonlinear nature. Here we show from two original experiments that a simple three-dimensional continuum description of the behaviour of soft glassy materials can be built. We first show that when a flow is imposed in some direction there is no yield resistance to a secondary flow: these systems are always unjammed simultaneously in all directions of space. The three-dimensional jamming criterion seems to be the plasticity criterion encountered in most solids14. We also find that they behave as simple liquids in the direction orthogonal to that of the main flow; their viscosity is inversely proportional to the main flow shear rate, as a signature of shear-induced structural relaxation, in close similarity to the structural relaxations driven by temperature and density in other glassy systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagrams of the experiments.
Figure 2: Shear-induced sedimentation velocity.
Figure 3: 3D flow curve.
Figure 4: 3D yield criterion.

Similar content being viewed by others

References

  1. Liu, A. J. & Nagel, S. R. (eds) Jamming and Rheology: Constrained Dynamics on Microscopic and Macroscopic Scales. (Taylor & Francis, 2001).

  2. Kegel, W. K. & van Blaaderen, A. Direct observation of dynamical heterogeneities in colloidal hard-sphere suspensions. Science 287, 290–293 (2000).

    Article  CAS  Google Scholar 

  3. Weeks, E. R., Crocker, J. C., Levitt, A. C., Schofield, A. & Weitz, D. A. Three-dimensional direct imaging of structural relaxation near the colloidal glass transition. Science 287, 627–631 (2000).

    Article  CAS  Google Scholar 

  4. Besseling, R., Weeks, E. R., Schofield, A. B. & Poon, W. C. K. Three-dimensional imaging of colloidal glasses under steady shear. Phys. Rev. Lett. 99, 028301 (2007).

    Article  CAS  Google Scholar 

  5. Schall, P., Weitz, D. A. & Spaepen, F. Structural rearrangements that govern flow in colloidal glasses. Science 318, 1895–1899 (2007).

    Article  CAS  Google Scholar 

  6. Ballesta, P., Duri, A. & Cipelletti, L. Unexpected drop of dynamical heterogeneities in colloidal suspensions approaching the jamming transition. Nature Phys. 4, 550–554 (2008).

    Article  CAS  Google Scholar 

  7. Liu, A. J. & Nagel, S. R. Jamming is not just cool any more. Nature 396, 21–22 (1998).

    Article  CAS  Google Scholar 

  8. Pusey, P. N. & van Megen, W. Observation of a glass-transition in suspensions of spherical colloidal particles. Phys. Rev. Lett. 59, 2083–2086 (1987).

    Article  CAS  Google Scholar 

  9. Sollich, P., Lequeux, F., Hébraud, P. & Cates, M. E. Rheology of soft glassy materials. Phys. Rev. Lett. 78, 2020–2023 (1997).

    Article  CAS  Google Scholar 

  10. Bonn, D. & Denn, M. Yield stress fluids slowly yield to analysis. Science 324, 1401–1402 (2009).

    Article  CAS  Google Scholar 

  11. Coussot, P. Rheometry of Pastes, Suspensions and Granular Materials (Wiley, 2005).

    Book  Google Scholar 

  12. Nguyen, Q. D. & Boger, D. Measuring the flow properties of yield stress fluids. Annu. Rev. Fluid Mech. 24, 47–88 (1992).

    Article  Google Scholar 

  13. Coussot, P. Rheophysics of pastes: A review of microscopic modelling approaches. Soft Matter 3, 528–540 (2007).

    Article  CAS  Google Scholar 

  14. Hill, R. The Mathematical Theory of Plasticity (Oxford Univ. Press, 1998).

    Google Scholar 

  15. Petekidis, G., Vlassopoulos, D. & Pusey, P. Yielding and flow of sheared colloidal glasses. J. Phys. Condens. Matter 16, 3955–3964 (2004).

    Article  Google Scholar 

  16. Fuchs, M. & Cates, M. E. Theory of nonlinear rheology and yielding of dense, colloidal suspensions. Phys. Rev. Lett. 89, 248304 (2002).

    Article  Google Scholar 

  17. Goyon, J., Colin, A., Ovarlez, G., Ajdari, A. & Bocquet, L. Spatial cooperativity in soft glassy flows. Nature 454, 84–87 (2008).

    Article  CAS  Google Scholar 

  18. Lemaître, A. & Caroli, C. Rate-dependent avalanche size in athermally sheared amorphous solids. Phys. Rev. Lett. 103, 065501 (2009).

    Article  Google Scholar 

  19. Tabuteau, H., Coussot, P. & de Bruyn, J. R. Drag force on a sphere in steady motion through a yield-stress fluid. J. Rheol. 51, 125–137 (2007).

    Article  CAS  Google Scholar 

  20. Jones, R. A. L. Soft Condensed Matter (Oxford Univ. Press, 2002).

    Book  Google Scholar 

  21. Chhabra, R. P. Bubbles, Drops And Particles in Non-Newtonian Fluids 2nd edn (CRC Press, 2007).

    Google Scholar 

  22. Truesdell, C. A First Course in Rational Continuum Mechanics (Pure and Applied Mathematics, Academic, 1977).

    Google Scholar 

  23. Coleman, B. D., Markovitz, H. & Noll, W. Viscometric Flows of Non-Newtonian Fluids; Theory and Experiment (Springer, 1966).

    Book  Google Scholar 

  24. Khaldoun, A., Eiser, E., Wegdam, G. H. & Bonn, D. Rheology: Liquefaction of quicksand under stress. Nature 437, 635–635 (2005).

    Article  CAS  Google Scholar 

  25. Ono, I. et al. Effective temperatures of a driven system near jamming. Phys. Rev. Lett. 89, 095703 (2002).

    Article  Google Scholar 

  26. Song, C., Wang, P. & Makse, H. A. Experimental measurement of an effective temperature for jammed granular materials. Proc. Natl Acad. Sci. 102, 2299–2304 (2005).

    Article  CAS  Google Scholar 

  27. Möbius, M. E., Katgert, G. & van Hecke, M. Relaxation and flow in linearly sheared two-dimensional foams. Preprint at <http://arxiv.org/abs/0811.0534v2> (2009).

  28. Oppong, F. K., Coussot, P. & de Bruyn, J. R. Gelation on the microscopic scale. Phys. Rev. E 78, 021405 (2008).

    Article  Google Scholar 

  29. Saltzman, E. J., Yatsenko, G. & Schweizer, K. S. Anomalous diffusion, structural relaxation and shear-thinning in glassy hard sphere fluids. J. Phys. Condens. Matter 20, 244129 (2008).

    Article  Google Scholar 

  30. Fuchs, M. & Ballauff, M. Flow curves of dense colloidal dispersions: Schematic model analysis of the shear-dependent viscosity near the colloidal glass transition. J. Chem. Phys. 122, 094707 (2005).

    Article  Google Scholar 

  31. Lu, J., Ravichandran, G. & Johnson, W. L. Deformation behaviour of the Zr41.2Ti13.8CU12.5Ni10Be22.5 bulk metallic glass over a wide range of strain-rates and temperatures. Acta Mater. 51, 3429–3443 (2003).

    Article  CAS  Google Scholar 

  32. Brader, J. M., Voigtmann, T., Fuchs, M., Larson, R. G. & Cates, M. E. Glass rheology: From mode-coupling theory to a dynamical yield criterion. Proc. Natl Acad. Sci. 106, 15186–15191 (2009).

    Article  CAS  Google Scholar 

  33. Beris, A. N., Tsamopoulos, J. A., Armstrong, R. C. & Brown, R. A. Creeping motion of a sphere through a Bingham plastic. J. Fluid Mech. 158, 219–244 (1985).

    Article  CAS  Google Scholar 

  34. Ovarlez, G., Bertrand, F. & Rodts, S. Local determination of the constitutive law of a dense suspension of noncolloidal particles through magnetic resonance imaging. J. Rheol. 50, 259–292 (2006).

    Article  CAS  Google Scholar 

  35. Rabideau, B. D., Lanos, C. & Coussot, P. An investigation of squeeze flow as a viable technique for determining the yield stress. Rheol. Acta 48, 517–526 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work.

Corresponding author

Correspondence to G. Ovarlez.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 252 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ovarlez, G., Barral, Q. & Coussot, P. Three-dimensional jamming and flows of soft glassy materials. Nature Mater 9, 115–119 (2010). https://doi.org/10.1038/nmat2615

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2615

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing