Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Liquid-gated interface superconductivity on an atomically flat film

Abstract

Liquid/solid interfaces are attracting growing interest not only for applications in catalytic activities and energy storage1,2, but also for their new electronic functions in electric double-layer transistors (EDLTs) exemplified by high-performance organic electronics3,4,5,6,7, field-induced electronic phase transitions8,9,10,11, as well as superconductivity in SrTiO3 (ref. 12). Broadening EDLTs to induce superconductivity within other materials is highly demanded for enriching the materials science of superconductors. However, it is severely hampered by inadequate choice of materials and processing techniques13. Here we introduce an easy method using ionic liquids as gate dielectrics, mechanical micro-cleavage techniques for surface preparation, and report the observation of field-induced superconductivity showing a transition temperature Tc=15.2 K on an atomically flat film of layered nitride compound, ZrNCl. The present result reveals that the EDLT is an extremely versatile tool to induce electronic phase transitions by electrostatic charge accumulation and provides new routes in the search for superconductors beyond those synthesized by traditional chemical methods.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interface between the ionic liquid and semiconductor of a typical EDLT and schematic structure of a ZrNCl single crystal.
Figure 2: A ZrNCl-based EDLT device and its transport properties.
Figure 3: Low-temperature transport properties of a ZrNCl EDLT and field-induced superconductivity.
Figure 4: Gate-voltage dependence of the superconductivity transition temperatures.

Similar content being viewed by others

References

  1. Simon, P. & Gogotsi, Y. Materials for electrochemical capacitors. Nature Mater. 7, 845–854 (2008).

    Article  CAS  Google Scholar 

  2. Aricò, A. S., Bruce, P., Scrosati, B., Tarascon, J. M. & Schalkwijk, W. V. Nanostructured materials for advanced energy conversion and storage devices. Nature Mater. 4, 366–377 (2005).

    Article  Google Scholar 

  3. Sandberg, H. G. O., Backlund, T. G., Osterbacka, R. & Stubb, H. High-performance all-polymer transistor using a hygroscopic insulator. Adv. Mater. 16, 1112–1115 (2004).

    Article  CAS  Google Scholar 

  4. Shimotani, H., Diguet, G. & Iwasa, Y. Direct comparison of field-effect and electrochemical doping in regioregular poly(3-hexylthiophene). Appl. Phys. Lett. 86, 022104 (2005).

    Article  Google Scholar 

  5. Panzer, M. J., Newman, C. R. & Frisbie, D. C. Low-voltage operation of a pentacene field-effect transistor with a polymer electrolyte gate dielectric. Appl. Phys. Lett. 86, 103503 (2005).

    Article  Google Scholar 

  6. Takeya, J. et al. High-density electrostatic carrier doping in organic single-crystal transistors with polymer gel electrolyte. Appl. Phys. Lett. 88, 112102 (2006).

    Article  Google Scholar 

  7. Shimotani, H., Asanuma, H. & Iwasa, Y. Electric double layer transistor of organic semiconductor crystals in a four-probe configuration. Jpn. J. Appl. Phys. 46, 3613–3617 (2007).

    Article  CAS  Google Scholar 

  8. Dhoot, A. S. et al. Beyond the metal–insulator transition in polymer electrolyte gated polymer field-effect transistors. Proc. Natl Acad. Sci. USA 103, 11834–11837 (2006).

    Article  CAS  Google Scholar 

  9. Misra, R., McCarthy, M. & Hebard, A. F. Electric field gating with ionic liquids. Appl. Phys. Lett. 90, 052905 (2007).

    Article  Google Scholar 

  10. Shimotani, H. et al. Insulator-to-metal transition in ZnO by electric double layer gating. Appl. Phys. Lett. 91, 082106 (2007).

    Article  Google Scholar 

  11. Dhoot, A. S., Israel, C., Moya, X., Mathur, N. D. & Friend, R. H. Large electric field effect in electrolyte-gated manganites. Phys. Rev. Lett. 102, 136402 (2009).

    Article  Google Scholar 

  12. Ueno, K. et al. Electric-field-induced superconductivity in an insulator. Nature Mater. 7, 855–858 (2008).

    Article  CAS  Google Scholar 

  13. Ahn, C. H. et al. Electrostatic modification of novel materials. Rev. Mod. Phys. 78, 1185–1212 (2006).

    Article  CAS  Google Scholar 

  14. Kötz, R. & Carlen, M. Principles and applications of electrochemical capacitors. Electrochim. Acta 45, 2483–2498 (2000).

    Article  Google Scholar 

  15. Schooley, J. F. et al. Dependence of the superconducting transition temperature on carrier concentration in semiconducting SrTiO3 . Phys. Rev. Lett. 14, 305–307 (1965).

    Article  CAS  Google Scholar 

  16. Kawasaki, M. et al. Atomic control of the SrTiO3 crystal surface. Science 266, 1540–1542 (1994).

    Article  CAS  Google Scholar 

  17. Ohnishi, T. et al. Determination of surface polarity of c-axis oriented ZnO films by coaxial impact-collision ion scattering spectroscopy. Appl. Phys. Lett. 72, 824–826 (1998).

    Article  CAS  Google Scholar 

  18. Cho, J. H. et al. High-capacitance ion gel gate dielectrics with faster polarization response times for organic thin film transistors. Adv. Mater. 20, 686–690 (2008).

    Article  CAS  Google Scholar 

  19. Yuan, H. T. et al. High-density carrier accumulation in ZnO field-effect transistors gated by electric double layers of ionic liquids. Adv. Funct. Mater. 19, 1046–1053 (2009).

    Article  CAS  Google Scholar 

  20. Yamanaka, S., Kawaji, H., Hotehama, K. & Ohashi, M. A new layer-structured nitride superconductor. Lithium-intercalated beta-zirconium nitride chloride, LixZrNCl. Adv. Mater. 8, 771–774 (1996).

    Article  CAS  Google Scholar 

  21. Takano, T., Kitora, A., Taguchi, Y. & Iwasa, Y. Modulation-doped-semiconductorlike behaviour manifested in magnetotransport measurements of LixZrNCl layered superconductors. Phys. Rev. B 77, 104518 (2008).

    Article  Google Scholar 

  22. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  Google Scholar 

  23. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    Article  CAS  Google Scholar 

  24. Ohashi, M., Nakano, H., Yamanaka, S. & Hattori, M. Hydrogen uptake by layer structured beta-ZrNCl. Solid State Ion. 32, 97–103 (1989).

    Article  Google Scholar 

  25. Shamoto, S. et al. Hydrogen in beta-ZrNCl. J. Phys. Chem. Solids 60, 1511–1513 (1999).

    Article  CAS  Google Scholar 

  26. Taguchi, Y., Kitora, A. & Iwasa, Y. Increase in Tc on reduction of doping in LixZrNCl superconductors. Phys. Rev. Lett. 97, 107001 (2006).

    Article  CAS  Google Scholar 

  27. Miyazaki, H. et al. Inter-layer screening length to electric field in thin graphite film. Appl. Phys. Exp. 1, 034007 (2008).

    Article  Google Scholar 

  28. Caviglia, A. D. et al. Electric field control of the LaAlO3/SrTiO3 interface ground state. Nature 456, 624–627 (2008).

    Article  CAS  Google Scholar 

  29. Kosterlitz, J. M. & Thouless, J. D. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C 6, 1181–1203 (1973).

    Article  CAS  Google Scholar 

  30. Halperin, B. I. & Nelson, D. R. Resistive transition in superconducting films. J. Low Temp. Phys. 36, 599–616 (1979).

    Article  CAS  Google Scholar 

  31. Susan, M. A. B. H., Kaneko, T., Noda, A. & Watanabe, M. Ion gels prepared by in situ radical polymerization of vinyl monomers in an ionic liquid and their characterization as polymer electrolytes. J. Am. Chem. Soc. 127, 4976–4983 (2005).

    Article  CAS  Google Scholar 

  32. Tokuda, H., Tsuzuki, S., Susan, M. A. B. H., Hayamizu, K. & Watanabe, M. How ionic are room-temperature ionic liquids? An indicator of the physicochemical properties. J. Phys. Chem. B 110, 19593–19600 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Chiba, Y. Ohno, F. Matsukura and H. Ohno for providing the electron beam lithography facility at the Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University. We also thank T. Takano, Y. Taguchi, K. Ueno, A. Tsukazaki, A. Ohtomo and M. Kawasaki for stimulating discussions. This research is financially supported by MEXT and JST.

Author information

Authors and Affiliations

Authors

Contributions

K.K. and Y.K. fabricated the pristine ZrNCl single crystals. H.T.Y. and H.S. tested the performance of ionic liquids. J.T.Y. and S.I. fabricated the EDLT devices. J.T.Y. carried out all of the measurements and analysed the data. J.T.Y. and Y.I. wrote the paper.

Corresponding authors

Correspondence to J. T. Ye or Y. Iwasa.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1436 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, J., Inoue, S., Kobayashi, K. et al. Liquid-gated interface superconductivity on an atomically flat film. Nature Mater 9, 125–128 (2010). https://doi.org/10.1038/nmat2587

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2587

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing