Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Three-dimensional structure and multistable optical switching of triple-twisted particle-like excitations in anisotropic fluids

Abstract

Control of structures in soft materials with long-range order forms the basis for applications such as displays, liquid-crystal biosensors, tunable lenses, distributed feedback lasers, muscle-like actuators and beam-steering devices. Bistable, tristable and multistable switching of well-defined structures of molecular alignment is of special interest for all of these applications. Here we describe the facile optical creation and multistable switching of localized configurations in the molecular orientation field of a chiral nematic anisotropic fluid. These localized chiro-elastic particle-like excitations—dubbed ‘triple-twist torons’—are generated by vortex laser beams and embed the localized three-dimensional (3D) twist into a uniform background. Confocal polarizing microscopy and computer simulations reveal their equilibrium internal structures, manifesting both skyrmion-like and Hopf fibration features. Robust generation of torons at predetermined locations combined with both optical and electrical reversible switching can lead to new ways of multistable structuring of complex photonic architectures in soft materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: T3 field configurations generated by Laguerre–Gaussian beams and embedded into a uniform field by defects.
Figure 2: Predetermined optical generation and switching of the toron structures.
Figure 3: FCPM imaging and computer simulations of laser-generated torons.
Figure 4: Elasticity and topology of the T3-1 structure.
Figure 5: Vector-field representation of the T3-1 configuration in the axial cross-section.

Similar content being viewed by others

References

  1. Woltman, S. J., Jay, D. G. & Crawford, G. P. Liquid-crystal materials find a new order in biomedical applications. Nature Mater. 6, 929–938 (2007).

    Article  CAS  Google Scholar 

  2. Kachynski, A. V. et al. Realignment-enhanced coherent anti-Stokes Raman scattering and three-dimensional imaging in anisotropic fluids. Opt. Express 16, 10617–10632 (2008).

    Article  CAS  Google Scholar 

  3. Camacho-Lopez, M., Finkelmann, H., Palffy-Muhoray, P. & Shelley, M. Fast liquid-crystal elastomer swims into the dark. Nature Mater. 3, 307–310 (2004).

    Article  CAS  Google Scholar 

  4. De Luca, A., Barna, V., Atherton, T. J., Carbone, G., Sousa, M. E. & Rosenblatt, C. Optical nanotomography of anisotropic fluids. Nature Phys. 4, 869–872 (2008).

    Article  CAS  Google Scholar 

  5. Clark, N. A. & Lagerwall, S. T. Submicrosecond bistable electro-optic switching in liquid crystals. Appl. Phys. Lett. 36, 899–991 (1980).

    Article  CAS  Google Scholar 

  6. Yang, D. K., Doane, J. W., Yaniv, Z. & Glasser, J. Cholesteric reflective display: Drive scheme and contrast. Appl. Phys. Lett. 64, 1905–1907 (1994).

    Article  CAS  Google Scholar 

  7. Kim, J.-H., Yoneya, M. & Yokoyama, H. Tristable nematic liquid-crystal device using micropatterned surface alignment. Nature 420, 159–162 (2002).

    Article  CAS  Google Scholar 

  8. van Oosten, C. L., Baastiansen, C. W. M. & Broer, D. J. Printed artificial cilia from liquid-crystal network actuators modularly driven by light. Nature Mater. 8, 677–682 (2009).

    Article  CAS  Google Scholar 

  9. Yamamoto, J. & Tanaka, H. Dynamic control of the photonic smectic order of membranes. Nature Mater. 4, 75–80 (2005).

    Article  CAS  Google Scholar 

  10. Smalyukh, I. I., Butler, J., Shrout, J. D., Parsek, M. R. & Wong, G. C. L. Elasticity-mediated nematic-like bacterial organization in model extracellular DNA matrix. Phys. Rev. E 78, 030701(R) (2008).

    Article  Google Scholar 

  11. Brake, J. M., Daschner, M. K., Luk, Y. Y. & Abbott, N. L. Biomolecular interactions at phospholipid-decorated surfaces of liquid crystals. Science 302, 2094–2097 (2003).

    Article  CAS  Google Scholar 

  12. Smalyukh, I. I., Zribi, O. V., Butler, J. C., Lavrentovich, O. D. & Wong, G. C. L. Structure and dynamics of liquid crystalline pattern formation in drying droplets of DNA. Phys. Rev. Lett. 96, 177801 (2006).

    Article  Google Scholar 

  13. De Gennes, P. G. & Prost, J. The Physics of Liquid Crystals (Oxford Univ. Press, 1995).

    Book  Google Scholar 

  14. Chaikin, P. M. & Lubensky, T. C. Principles of Condensed Matter Physics (Cambridge Univ. Press, 2000).

    Google Scholar 

  15. Coles, H. J. & Pivnenko, M. N. Liquid crystal ‘blue phases’ with a wide temperature range. Nature 436, 997–1000 (2005).

    Article  CAS  Google Scholar 

  16. Clifford, M. A., Arlt, J., Courtial, J. & Dholakia, K. High-order Laguerre–Gaussian laser modes for studies of cold atoms. Opt. Commun. 156, 300–306 (1998).

    Article  CAS  Google Scholar 

  17. Curtis, J. E. & Grier, D. G. Structure of optical vortices. Phys. Rev. Lett. 90, 133901 (2003).

    Article  Google Scholar 

  18. Smalyukh, I. I. et al. Electric-field-induced nematic-cholesteric transition and three-dimensional director structures in homeotropic cells. Phys. Rev. E 72, 061707 (2005).

    Article  CAS  Google Scholar 

  19. Oswald, P., Baudry, J. & Pirkl, S. Static and dynamic properties of cholesteric fingers in electric field. Phys. Rep. 337, 67–96 (2000).

    Article  CAS  Google Scholar 

  20. Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of light and the transformation of Laguerre Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992).

    Article  CAS  Google Scholar 

  21. Marrucci, L., Manzo, C. & Paparo, D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett. 96, 163905 (2006).

    Article  CAS  Google Scholar 

  22. Brasselet, E., Murazawa, N., Misawa, H. & Juodkazis, S. Optical vortices from liquid crystal droplets. Phys. Rev. Lett. 103, 103903 (2009).

    Article  Google Scholar 

  23. Smalyukh, I. I., Shiyanovskii, S. V. & Lavrentovich, O. D. Three-dimensional imaging of orientational order by fluorescence confocal polarizing microscopy. Chem. Phys. Lett. 336, 88–96 (2001).

    Article  CAS  Google Scholar 

  24. Muhlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).

    Article  CAS  Google Scholar 

  25. Dubois-Violette, E. & Pansu, B. Frustration and related topology of blue phases. Mol. Cryst. Liq. Cryst. 165, 151–182 (1988).

    CAS  Google Scholar 

  26. Mosseri, R. Geometrical frustration and defects in condensed matter systems. C.R. Chim. 11, 192–197 (2008).

    Article  CAS  Google Scholar 

  27. Pansu, B., Dubois-Violette, E. & Dandoloff, R. Disclination in the S3 blue phase. J. Physique 48, 305–317 (1987).

    Article  Google Scholar 

  28. Smalyukh, I. I., Kachynski, A. V., Kuzmin, A N. & Prasad, P. N. Laser trapping in anisotropic fluids and polarization controlled particle dynamics. Proc. Natl Acad. Sci. USA 103, 18048–18053 (2006).

    Article  CAS  Google Scholar 

  29. Gil, L. & Gilli, J. M. Surprising dynamics of some cholesteric liquid crystal patterns. Phys. Rev. Lett. 80, 5742–5745 (1998).

    Article  CAS  Google Scholar 

  30. Smalyukh, I. I. Confocal microscopy of director structures in strongly confined and composite systems. Mol. Cryst. Liq. Cryst. 477, 23–41 (2007).

    Article  CAS  Google Scholar 

  31. Nabarro, F. R. N. Singular lines and singular points of ferromagnetic spin systems and of nematic liquid crystals. J. Physique 33, 1089–1098 (1972).

    Article  Google Scholar 

  32. Helman, J. L. & Hesselink, L. Visualizing vector field topology in fluid flows. IEEE Comput. Graph. Appl. 11, 36–46 (1991).

    Article  Google Scholar 

  33. Hung, W.-C. et al. Surface plasmon enhanced diffraction in cholesteric liquid crystals. Appl. Phys. Lett. 90, 183115 (2007).

    Article  Google Scholar 

  34. Hegmann, T., Qi, H. & Marx, V. M. Nanoparticles in liquid crystals: Synthesis, self-assembly, defect formation and potential applications. J. Inorg. Organomet. Polym. Mater. 17, 483–508 (2007).

    Article  CAS  Google Scholar 

  35. Loudet, J. C., Barois, P. & Poulin, P. Colloidal ordering from phase separation in a liquid-crystalline continuous phase. Nature 407, 611–613 (2000).

    Article  CAS  Google Scholar 

  36. Poulin, P., Holger, S., Lubensky, T. C. & Weitz, D. A. Novel colloidal interactions in anisotropic fluids. Science 275, 1770–1773 (1997).

    Article  CAS  Google Scholar 

  37. Smalyukh, I. I., Lavrentovich, O. D., Kuzmin, A. N., Kachynskii, A. V. & Prasad, P. N. Elasticity-mediated self-organization and colloidal interactions of solid spheres. Phys. Rev. Lett. 95, 157801 (2005).

    Article  CAS  Google Scholar 

  38. Stebe, K. J., Lewandowski, E. & Ghosh, M. Oriented assembly of metamaterials. Science 325, 159–160 (2009).

    Article  CAS  Google Scholar 

  39. Kang, S.-W. & Chien, L.-C. Field-induced and polymer-stabilized two-dimensional cholesteric liquid crystal gratings. Appl. Phys. Lett. 90, 221110 (2007).

    Article  Google Scholar 

  40. Lu, S.-Y. & Chien, L.-C. A polymer stabilized single-layer color cholesteric liquid crystal display with anisotropic reflection. Appl. Phys. Lett. 91, 131119 (2007).

    Article  Google Scholar 

  41. Leach, J., Dennis, M. R., Courtial, J. & Padgett, M. J. Vortex knots in light. New J. Phys. 7, 1–11 (2005).

    Article  Google Scholar 

  42. Leach, J., Dennis, M. R., Courtial, J. & Padgett, M. J. Laser beams: Knotted threads of darkness. Nature 432, 165 (2004).

    Article  CAS  Google Scholar 

  43. Irvine, W. T. M. & Bouwmeester, D. Linked and knotted beams of light. Nature Phys. 4, 716–720 (2008).

    Article  CAS  Google Scholar 

  44. Anderson, V. J. & Lekkerkerker, H. N. Insights into phase transition kinetics from colloid science. Nature 416, 811–815 (2002).

    Article  CAS  Google Scholar 

  45. Hud, N. V., Downing, K. H. & Balhord, R. A constant radius of curvature model for the organization of DNA in toroidal condensates. Proc. Natl Acad. Sci. USA 92, 3581–3585 (1995).

    Article  CAS  Google Scholar 

  46. Kulic, I. M., Andrienko, D. & Deserno, M. Twist-bend instability for toroidal DNA condensates. Europhys. Lett. 67, 418–424 (2004).

    Article  CAS  Google Scholar 

  47. Livolant, F. & Bouligand, Y. Double helical arrangement of spread dinoflagellate chromosomes. Chromosoma 80, 97–118 (1980).

    Article  CAS  Google Scholar 

  48. Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the Institute for Complex Adaptive Matter (ICAM) and the NSF grant nos DMR-0645461, DMR-0820579, DMR-0847782 and DMR-0844115 as well as the University of Colorado Innovation Seed Grant. We also thank F. Livolant, T. Lubensky, L. Radzihovsky and J.-F. Sadoc for discussions.

Author information

Authors and Affiliations

Authors

Contributions

I.I.S. and R.P.T. carried out all experimental work. I.I.S. was responsible for project planning and tentative explanation. Y.L. did computer simulations of structure and elasticity and I.I.S. simulated the intensity distribution. I.I.S., Y.L., N.A.C. and R.P.T. were responsible for writing the article. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Ivan I. Smalyukh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1026 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smalyukh, I., Lansac, Y., Clark, N. et al. Three-dimensional structure and multistable optical switching of triple-twisted particle-like excitations in anisotropic fluids. Nature Mater 9, 139–145 (2010). https://doi.org/10.1038/nmat2592

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2592

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing