Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A ten-year perspective on dilute magnetic semiconductors and oxides

Abstract

Over the past ten years, the search for compounds combining the properties of semiconductors and ferromagnets has evolved into an important field of materials science. This endeavour has been fuelled by many demonstrations of remarkable low-temperature functionalities in the ferromagnetic structures (Ga,Mn)As and p-(Cd,Mn)Te, and related compounds, and by the theoretical prediction that magnetically doped, p-type nitride and oxide semiconductors might support ferromagnetism mediated by valence-band holes to above room temperature. Indeed, ferromagnetic signatures persisting at high temperatures have been detected in a number of non-metallic systems, even under conditions in which the presence of spin ordering was not originally anticipated. Here I review recent experimental and theoretical developments, emphasizing that they not only disentangle many controversies and puzzles accumulated over the past decade but also offer new research prospects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental data for p-type DMS films.
Figure 2: Experimental energies of Mn levels in the gaps of III–V compounds, with respect to the valence-band edges.
Figure 3: Predictions of the pd Zener model compared with experimental data for p-type (III,Mn)V DMSs.
Figure 4: Dependence of TC on the concentration of magnetic impurities and density of hole states at the Fermi level for weak and strong coupling.
Figure 5: Resistive indications of ferromagnetism in p-Zn0.981Mn0.019Te:N and n-Zn0.97Mn0.03O:Al.
Figure 6: Evidence for crystallographic and chemical phase separations in DMSs.
Figure 7: Formation of nanocolumns DMSs by aggregation of transition-metal cations.
Figure 8: Computed energy change Ed in ZnTe and GaAs.

Similar content being viewed by others

References

  1. Story, T., Galazka, R. R., Frankel, R. B. & Wolff, P. A. Carrier-concentration-induced ferromagnetism in PbSnMnTe. Phys. Rev. Lett. 56, 777–779 (1986).

    Article  CAS  Google Scholar 

  2. Ohno, H., Munekata, H., Penney, T., von Molnàr, S. & Chang, L. L. Magnetotransport properties of p-type (In, Mn)As diluted magnetic III-V semiconductors. Phys. Rev. Lett. 68, 2664–2667 (1992).

    Article  CAS  Google Scholar 

  3. Ohno, H. et al. (Ga, Mn)As: a new diluted magnetic semiconductor based on GaAs. Appl. Phys. Lett. 69, 363–365 (1996).

    Article  CAS  Google Scholar 

  4. Van Esch, A. et al. Interplay between the magnetic and transport properties in the III-V diluted magnetic semiconductor Ga1−xMnxAs. Phys. Rev. B 56, 13103–13112 (1997).

    Article  CAS  Google Scholar 

  5. Haury, A. et al. Observation of a ferromagnetic transition induced by two-dimensional hole gas in modulation-doped CdMnTe quantum wells. Phys. Rev. Lett. 79, 511–514 (1997).

    Article  CAS  Google Scholar 

  6. Ferrand, D. et al. Carrier-induced ferromagnetic interactions in p-doped Zn1−xMnxTe epilayers. J. Cryst. Growth 214–215, 387–390 (2000).

    Article  Google Scholar 

  7. Awschalom, D. D. & Flatté, M. E. Challenges for semiconductor spintronics. Nature Phys. 3, 153–159 (2007).

    Article  CAS  Google Scholar 

  8. Dietl, T., Awschalom, D. D., Kaminska, M. & Ohno, H. (eds) Spintronics (Semiconductors and Semimetals 82, Elsevier, 2008).

    Google Scholar 

  9. Ohno, Y. et al. Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature 402, 790–792 (1999).

    Article  CAS  Google Scholar 

  10. Ohno, H. et al. Electric-field control of ferromagnetism. Nature 408, 944–946 (2000).

    Article  CAS  Google Scholar 

  11. Chiba, D. et al. Magnetization vector manipulation by electric fields. Nature 455, 515–518 (2008).

    Article  CAS  Google Scholar 

  12. Chernyshov, A. et al. Evidence for reversible control of magnetization in a ferromagnetic material by means of spin–orbit magnetic field. Nature Phys. 5, 656–659 (2009).

    Article  CAS  Google Scholar 

  13. Gould, C. et al. Tunnelling anisotropic magnetoresistance: a spin-valve like tunnel magnetoresistance using a single magnetic layer. Phys. Rev. Lett. 93, 117203 (2004).

  14. Wunderlich, J. et al. Coulomb blockade anisotropic magnetoresistance effect in a (Ga, Mn)As single-electron transistor. Phys. Rev. Lett. 97, 077201 (2006).

  15. Yamanouchi, M., Chiba, D., Matsukura, F. & Ohno, H. Current-induced domain-wall switching in a ferromagnetic semiconductor structure. Nature 428, 539–541 (2004).

    Article  CAS  Google Scholar 

  16. Matsumoto, Y. et al. Room temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science 291, 854–856 (2001).

    Article  CAS  Google Scholar 

  17. Bonanni, A. & Dietl, T. A story of high-temperature ferromagnetism in semiconductors. Chem. Soc. Rev. 39, 528–539 (2010).

    Article  CAS  Google Scholar 

  18. Sheu, B. L. et al. Onset of ferromagnetism in low-doped Ga1−xMnxAs. Phys. Rev. Lett. 99, 227205 (2007).

  19. Sawicki, M. et al. Experimental probing of the interplay between ferromagnetism and localization in (Ga,Mn)As. Nature Phys. 6, 22–25 (2010).

    Article  CAS  Google Scholar 

  20. Richardella, A. et al. Visualizing critical correlations near the metal-insulator transition in Ga1−xMnxAs. Science 327, 665–669 (2010).

    Article  CAS  Google Scholar 

  21. Dietl, T., Ohno, H., Matsukura, F., Cibert, J. & Ferrand, D. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 1019–1022 (2000).

    Article  CAS  Google Scholar 

  22. Matsukura, F., Ohno, H., Shen, A. & Sugawara, Y. Transport properties and origin of ferromagnetism in (Ga,Mn)As. Phys. Rev. B 57, R2037–R2040 (1998).

    Article  CAS  Google Scholar 

  23. Okabayashi, J. et al. Core-level photoemission study of Ga1−xMnxAs. Phys. Rev. B 58, R4211–R4214 (1998).

    Article  CAS  Google Scholar 

  24. Linnarsson, M., Janzén, E., Monemar, B., Kleverman, M. & Thilderkvist, A. Electronic structure of the GaAs:MnGa center. Phys. Rev. B 55, 6938–6944 (1997).

    Article  CAS  Google Scholar 

  25. Zener, C. Interaction between the d shells in the transition metals. Phys. Rev. 81, 440–444 (1951).

    Article  CAS  Google Scholar 

  26. Dietl, T., Haury, A. & d'Aubigne, Y. M. Free carrier-induced ferromagnetism in structures of diluted magnetic semiconductors. Phys. Rev. B 55, R3347–R3350 (1997).

    Article  CAS  Google Scholar 

  27. Jungwirth, T., Atkinson, W. A., Lee, B. & MacDonald, A. H. Interlayer coupling in ferromagnetic semiconductor superlattices. Phys. Rev. B 59, 9818–9821 (1999).

    Article  CAS  Google Scholar 

  28. Fukuma, Y. et al. Carrier-induced ferromagnetism in Ge0.92Mn0.08Te epilayers with a Curie temperature up to 190 K. Appl. Phys. Lett. 93, 252502 (2008).

    Article  Google Scholar 

  29. Olejník, K. et al. Enhanced annealing, high Curie temperature and low-voltage gating in (Ga,Mn)As: a surface oxide control study. Phys. Rev. B 78, 054403 (2008).

  30. Wang, M. et al. Achieving high Curie temperature in (Ga,Mn)As. Appl. Phys. Lett. 93, 132103 (2008).

    Article  Google Scholar 

  31. Chen, L. et al. Low-temperature magnetotransport behaviors of heavily Mn-doped (Ga,Mn)As films with high ferromagnetic transition temperature. Appl. Phys. Lett. 95, 182505 (2009).

    Article  Google Scholar 

  32. Akai, H. Ferromagnetism and its stability in the diluted magnetic semiconductor (In,Mn)As. Phys. Rev. Lett. 81, 3002–3005 (1998).

    Article  CAS  Google Scholar 

  33. Sato, K., Dederichs, P. H. & Katayama-Yoshida, H. Curie temperatures of III-V diluted magnetic semiconductors calculated from first principles. Europhys. Lett. 61, 403–408 (2003).

    Article  CAS  Google Scholar 

  34. Mahadevan, P. & Zunger, A. Trends in ferromagnetism, hole localization, and acceptor level depth for Mn substitution in GaN, GaP, GaAs, GaSb. Appl. Phys. Lett. 85, 2860–2862 (2004).

    Article  CAS  Google Scholar 

  35. Burch, K., Awschalom, D. & Basov, D. Optical properties of III-Mn-V ferromagnetic semiconductors. J. Magn. Magn. Mater. 320, 3207–3228 (2008).

    Article  CAS  Google Scholar 

  36. Alberi, K. et al. Formation of Mn-derived impurity band in III-Mn-V alloys by valence band anticrossing. Phys. Rev. B 78, 075201 (2008).

  37. Liu, C., Yun, F. & Morkoç, H. Ferromagnetism of ZnO and GaN: a review. J. Mater. Sci. Mater. Electron. 16, 555–597 (2005).

    Article  CAS  Google Scholar 

  38. Coey, J. M. D. Dilute magnetic oxides. Curr. Opin. Solid State Mater. Sci. 10, 83–92 (2006).

    Article  CAS  Google Scholar 

  39. Bonanni, A. Ferromagnetic nitride-based semiconductors doped with transition metals and rare earths. Semicond. Sci. Technol. 22, R41–R56 (2007).

    Article  CAS  Google Scholar 

  40. Sato, K. et al. First-principles theory of dilute magnetic semiconductors. Rev. Mod. Phys. 82, 1633–1690 (2010).

    Article  CAS  Google Scholar 

  41. Blinowski, J., Kacman, P. & Majewski, J. A. Ferromagnetic superexchange in Cr-based diluted magnetic semiconductors. Phys. Rev. B 53, 9524–9527 (1996).

    Article  CAS  Google Scholar 

  42. Walsh, A., Da Silva, J. L. F. & Wei, S-H. Theoretical description of carrier mediated magnetism in cobalt doped ZnO. Phys. Rev. Lett. 100, 256401 (2008).

  43. Coey, J. M. D., Venkatesan, M. & Fitzgerald, C. B. Donor impurity band exchange in dilute ferromagnetic oxides. Nature Mater. 4, 173–179 (2005).

    Article  CAS  Google Scholar 

  44. Wang, Q., Sun, Q., Jena, P. & Kawazoe, Y. Magnetic properties of transition-metal-doped Zn1− xTxO (T = Cr, Mn, Fe, Co, and Ni) thin films with and without intrinsic defects: a density functional study. Phys. Rev. B 79, 115407 (2009).

  45. Park, C. H. & Chadi, D. J. Hydrogen-mediated spin-spin interaction in ZnCoO. Phys. Rev. Lett. 94, 127204 (2005).

  46. Coey, J. M. D., Wongsaprom, K., Alaria, J. & Venkatesan, M. Charge-transfer ferromagnetism in oxide nanoparticles. J. Phys. D 41, 134012 (2008).

  47. Dietl, T. Dilute magnetic semiconductors: functional ferromagnets. Nature Mater. 2, 646–648 (2003).

    Article  CAS  Google Scholar 

  48. Cho, Y. J., Yu, K. M., Liu, X., Walukiewicz, W. & Furdyna, J. K. Effects of donor doping on Ga1−xMnxAs. Appl. Phys. Lett. 93, 262505 (2008).

  49. Mayer, M. A. et al. Electronic structure of Ga1−xMnxAs analyzed according to hole-concentration-dependent measurements. Phys. Rev. B 81, 045205 (2010).

  50. Jungwirth, T. et al. Character of states near the Fermi level in (Ga,Mn)As: impurity to valence band crossover. Phys. Rev. B 76, 125206 (2007).

  51. Dietl, T. Interplay between carrier localization and magnetism in diluted magnetic and ferromagnetic semiconductors. J. Phys. Soc. Jpn 77, 031005 (2008).

    Article  Google Scholar 

  52. Altshuler, B. L. & Aronov, A. G. in Electron-Electron Interactions in Disordered Systems (eds Efros, A. L. & Pollak, M.) 1–153 (North Holland, 1985).

    Book  Google Scholar 

  53. Lee, P. A. & Ramakrishnan, T. V. Disordered electronic systems. Rev. Mod. Phys. 57, 287–337 (1985).

    Article  CAS  Google Scholar 

  54. Belitz, D. & Kirkpatrick, T. R. The Anderson-Mott transition. Rev. Mod. Phys. 66, 261–380 (1994).

    Article  CAS  Google Scholar 

  55. Edwards, P. P. & Sienko, M. J. Universality aspects of the metal-nonmetal transition in condensed media. Phys. Rev. B 17, 2575–2581 (1978).

    Article  CAS  Google Scholar 

  56. Dietl, T., Matsukura, F. & Ohno, H. Ferromagnetism of magnetic semiconductors: Zhang-Rice limit. Phys. Rev. B 66, 033203 (2002).

  57. Dietl, T. Hole states in wide band-gap diluted magnetic semiconductors and oxides. Phys. Rev. B 77, 085208 (2008).

  58. Neumaier, D. et al. All-electrical measurement of the density of states in (Ga,Mn)As. Phys. Rev. Lett. 103, 087203 (2009).

  59. Boukari, H. et al. Light and electric field control of ferromagnetism in magnetic quantum structures. Phys. Rev. Lett. 88, 207204 (2002).

  60. Nishitani, Y. et al. Curie temperature versus hole concentration in field-effect structures of Ga1−xMnxAs. Phys. Rev. B 81, 045208 (2010).

  61. MacDonald, A. H., Schiffer, P. & Samarth, N. Ferromagnetic semiconductors: moving beyond (Ga,Mn)As. Nature Mater. 4, 195–202 (2005).

    Article  CAS  Google Scholar 

  62. Edmonds, K. W. et al. High Curie temperature GaMnAs obtained by resistance-monitored annealing. Appl. Phys. Lett. 81, 4991–4993 (2002).

    Article  CAS  Google Scholar 

  63. Cho, Y. J., Liu, X. & Furdyna, J. K. Collapse of ferromagnetism in (Ga,Mn)As at high hole concentrations. Semicond. Sci. Technol. 23, 125010 (2008).

  64. Furdyna, J. K. et al. Fermi level effects on Mn incorporation in modulation-doped ferromagnetic III1−xMnxV heterostructures. J. Phys. Condens. Matter 16, S5499–S5508 (2004).

    Article  CAS  Google Scholar 

  65. Scarpulla, M. A. et al. Ferromagnetism in Ga1−xMnxP: evidence for inter-Mn exchange mediated by localized holes within a detached impurity band. Phys. Rev. Lett. 95, 207204 (2005).

  66. Schallenberg, T. & Munekata, H. Preparation of ferromagnetic (In,Mn)As with a high Curie temperature of 90 K. Appl. Phys. Lett. 89, 042507 (2006).

  67. Abe, E., Matsukura, F., Yasuda, H., Ohno, Y. & Ohno, H. Molecular beam epitaxy of III-V diluted magnetic semiconductor (Ga,Mn)Sb. Physica E 7, 981–985 (2000).

    Article  CAS  Google Scholar 

  68. Wojtowicz, T. et al. In1−xMnxSb — a new narrow gap ferromagnetic semiconductor. Appl. Phys. Lett. 82, 4310–4312 (2003).

    Article  CAS  Google Scholar 

  69. Jungwirth, T., König, J., Sinova, J., Kučera, J. & MacDonald, A. H. Curie temperature trends in (III,Mn)V ferromagnetic semiconductors. Phys. Rev. B 66, 012402 (2002).

  70. Jungwirth, T., Sinova, J., Mašek, J., Kučera, J. & MacDonald, A. H. Theory of ferromagnetic (III,Mn)V semiconductors. Rev. Mod. Phys. 78, 809–864 (2006).

    Article  CAS  Google Scholar 

  71. Glunk, M. et al. Magnetic anisotropy in (Ga,Mn)As: influence of epitaxial strain and hole concentration. Phys. Rev. B 79, 195206 (2009).

  72. Kodzuka, M., Ohkubo, T., Hono, K., Matsukura, F. & Ohno, H. 3DAP analysis of (Ga,Mn)As diluted magnetic semiconductor thin film. Ultramicroscopy 109, 644–648 (2009).

    Article  CAS  Google Scholar 

  73. Yu, K. M. et al. Effect of the location of Mn sites in ferromagnetic Ga1−xMnxAs on its Curie temperature. Phys. Rev. B 65, 201303 (2002).

  74. Wierzbowska, M., Sanchez-Portal, D. & Sanvito, S. Different origin of the ferromagnetic order in (Ga,Mn)As and (Ga,Mn)N. Phys. Rev. B 70, 235209 (2004).

  75. Schulthess, T., Temmerman, W. M., Szotek, Z., Butler, W. H. & Stocks, G. M. Electronic structure and exchange coupling of Mn impurities in III-V semiconductors. Nature Mater. 4, 838–844 (2005).

    Article  CAS  Google Scholar 

  76. Kitchen, D., Richardella, A., Tang, J-M., Flatte, M. E. & Yazdani, A. Atom-by-atom substitution of Mn in GaAs and visualization of their hole-mediated interactions. Nature 442, 436–439 (2006).

    Article  CAS  Google Scholar 

  77. Sarigiannidou, E. et al. Intrinsic ferromagnetism in wurtzite (Ga,Mn)N semiconductor. Phys. Rev. B 74, 041306 (2006).

  78. Martinez-Criado, G. et al. Mn-rich clusters in GaN: hexagonal or cubic symmetry? Appl. Phys. Lett. 86, 131927 (2005).

    Article  Google Scholar 

  79. Lipińska, A. et al. Ferromagnetic properties of p-(Cd,Mn)Te quantum wells: interpretation of magneto-optical measurements by Monte Carlo simulations. Phys. Rev. B 79, 235322 (2009).

  80. Ferrand, D. et al. Carrier-induced ferromagnetism in p-Zn1−xMnxTe. Phys. Rev. B 63, 085201 (2001).

  81. Andrearczyk, T. et al. in Proc. 25th Int. Conf. Phys. Semicond. (eds Miura, N. & Ando, T.) 234–235 (Springer, 2001).

    Google Scholar 

  82. Serrate, D., Teresa, J. M. D. & Ibarra, M. R. Double perovskites with ferromagnetism above room temperature. J. Phys. Condens. Matter 19, 023201 (2007).

  83. Park, J. H., Kim, M. G., Jang, H. M., Ryu, S. & Kim, Y. M. Co-metal clustering as the origin of ferromagnetism in Co-doped ZnO thin films. Appl. Phys. Lett. 84, 1338–1340 (2004).

    Article  CAS  Google Scholar 

  84. Ney, A. et al. Advanced spectroscopic synchrotron techniques to unravel the intrinsic properties of dilute magnetic oxides: the case of Co:ZnO. N. J. Phys. 12, 013020 (2010).

    Article  Google Scholar 

  85. Bonanni, A. et al. Paramagnetic GaN:Fe and ferromagnetic (Ga,Fe)N: the relationship between structural, electronic, and magnetic properties. Phys. Rev. B 75, 125210 (2007).

  86. Boeck, J. D. et al. Nanometer-scale magnetic MnAs particles in GaAs grown by molecular beam epitaxy. Appl. Phys. Lett. 68, 2744–2746 (1996).

    Article  Google Scholar 

  87. Moreno, M., Trampert, A., Jenichen, B., Däweritz, L. & Ploog, K. H. Correlation of structure and magnetism in GaAs with embedded Mn(Ga)As magnetic nanoclusters. J. Appl. Phys. 92, 4672–4677 (2002).

    Article  CAS  Google Scholar 

  88. Rovezzi, M. et al. Local structure of (Ga,Fe)N and (Ga,Fe)N:Si investigated by X-ray absorption fine structure spectroscopy. Phys. Rev. B 79, 195209 (2009).

  89. Bonanni, A. et al. Controlled aggregation of magnetic ions in a semiconductor: an experimental demonstration. Phys. Rev. Lett. 101, 135502 (2008).

  90. Tanaka, M., Yokoyama, M., Hai, P. N. & Ohya, S. in Spintronics (eds Dietl, T., Awschalom, D. D., Kaminska, M. & Ohno, H.) 455–485 (Semiconductors and Semimetals 82, Elsevier, 2008).

    Google Scholar 

  91. Kuroda, S. et al. Origin and control of high temperature ferromagnetism in semiconductors. Nature Mater. 6, 440–446 (2007).

    Article  CAS  Google Scholar 

  92. Gu, L. et al. Characterization of Al(Cr)N and Ga(Cr)N dilute magnetic semiconductors. J. Magn. Magn. Mater. 290–291, 1395–1397 (2005).

    Article  Google Scholar 

  93. Jamet, M. et al. High-Curie-temperature ferromagnetism in self-organized Ge1−xMnx nanocolumns. Nature Mater. 5, 653–659 (2006).

    Article  CAS  Google Scholar 

  94. Nishio, Y., Ishikawa, K., Kuroda, S., Mitome, M. & Bando, Y. in Mater. Res. Soc. Symp. Proc. Vol. 1183-FF01-11 (Materials Research Society, 2009).

    Google Scholar 

  95. Katayama-Yoshida, H. et al. Theory of ferromagnetic semiconductors. Phys. Status Solidi A 204, 15–32 (2007).

    Article  CAS  Google Scholar 

  96. Dietl, T. Self-organised growth controlled by charge states of magnetic impurities. Nature Mater. 5, 673 (2006).

    Article  CAS  Google Scholar 

  97. Ye, L-H. Freeman, A. J. Defect compensation, clustering, and magnetism in Cr-doped anatase. Phys. Rev. B 73, 081304(R) (2006).

    Google Scholar 

  98. Straumal, B. B. et al. Magnetization study of nanograined pure and Mn-doped ZnO films: formation of a ferromagnetic grain-boundary foam. Phys. Rev. B 79, 205206 (2009).

  99. Ney, A. et al. Absence of intrinsic ferromagnetic interactions of isolated and paired Co dopant atoms in Zn1−xCoxO with high structural perfection. Phys. Rev. Lett. 100, 157201 (2008).

  100. van Schilfgaarde, M. & Mryasov, O. N. Anomalous exchange interactions in III-V dilute magnetic semiconductors. Phys. Rev. B 63, 233205 (2001).

  101. Zunger, A. in Solid State Physics Vol. 39 (eds Seitz, F. & Turnbull, D.) 275–464 (Academic, 1986).

    Google Scholar 

  102. Furdyna, J. K. & Kossut, J. (eds) Diluted Magnetic Semiconductors (Semiconductors and Semimetals 25, Academic, 1988).

    Google Scholar 

  103. Da Silva, J. L. F., Dalpian, G. M. & Wei, S-H. Carrier-induced enhancement and suppression of ferromagnetism in Zn1−xCrxTe and Ga1−xCrxAs: origin of the spinodal decomposition. N. J. Phys. 10, 113007 (2008).

  104. Hai, P. N., Ohya, S., Tanaka, M., Barnes, S. E. & Maekawa, S. Electromotive force and huge magnetoresistance in magnetic tunnel junctions. Nature 458, 489–492 (2007).

    Article  Google Scholar 

  105. Katayama-Yoshida, H., Sato, K., Fukushima, T. & Toyoda, M. H. K. & Dinh, V. A. in Spintronics (eds Dietl, T., Awschalom, D. D., Kaminska, M. & Ohno, H.) 433–454 (Semiconductors and Semimetals 82, Elsevier, 2008).

    Google Scholar 

  106. Geshi, M., Kusakabe, K., Tsukamoto, H. & Suzuki, N. A new ferromagnetic material excluding transition metals: CaAs in a distorted zinc-blende structure. AIP Conf. Proc. 772, 327–328 (2005).

    Article  CAS  Google Scholar 

  107. Volnianska, O. & Boguslawski, P. Magnetism of solids resulting from spin polarization of p orbitals. J. Phys. Condens. Matter 22, 073202 (2010).

  108. Elfimov, I. S., Yunoki, S. & Sawatzky, G. A. Possible path to a new class of ferromagnetic and half-metallic ferromagnetic materials. Phys. Rev. Lett. 89, 216403 (2002).

  109. Sliwa, C. & Dietl, T. Electron-hole contribution to the apparent s-d exchange interaction in III-V dilute magnetic semiconductors. Phys. Rev. B 78, 165205 (2008).

  110. Grace, P. J. et al. The origin of the magnetism of etched silicon. Adv. Mater. 21, 71–74 (2009).

    Article  CAS  Google Scholar 

  111. Sperl, M. et al. Identifying the character of ferromagnetic Mn in epitaxial Fe/(Ga,Mn)As heterostructures. Phys. Rev. B 81, 035211 (2010).

  112. Shick, A. B., Khmelevskyi, S., Mryasov, O. N., Wunderlich, J. & Jungwirth, T. Spin-orbit coupling induced anisotropy effects in bimetallic antiferromagnets: a route towards antiferromagnetic spintronics. Phys. Rev. B 81, 212409 (2010).

Download references

Acknowledgements

This work was supported by the FunDMS Advanced Grant of the European Research Council within the 'Ideas' 7th Framework Programme of the EC, and earlier by the ERATO project of the Japan Science and Technology Agency and the Alexander von Humboldt Foundation. Collaboration with the groups of A. Bonanni, S. Kuroda, H. Ohno and M. Sawicki is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Dietl.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dietl, T. A ten-year perspective on dilute magnetic semiconductors and oxides. Nature Mater 9, 965–974 (2010). https://doi.org/10.1038/nmat2898

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2898

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing