A ten-year perspective on dilute magnetic semiconductors and oxides

Journal name:
Nature Materials
Year published:
Published online


Over the past ten years, the search for compounds combining the properties of semiconductors and ferromagnets has evolved into an important field of materials science. This endeavour has been fuelled by many demonstrations of remarkable low-temperature functionalities in the ferromagnetic structures (Ga,Mn)As and p-(Cd,Mn)Te, and related compounds, and by the theoretical prediction that magnetically doped, p-type nitride and oxide semiconductors might support ferromagnetism mediated by valence-band holes to above room temperature. Indeed, ferromagnetic signatures persisting at high temperatures have been detected in a number of non-metallic systems, even under conditions in which the presence of spin ordering was not originally anticipated. Here I review recent experimental and theoretical developments, emphasizing that they not only disentangle many controversies and puzzles accumulated over the past decade but also offer new research prospects.

At a glance


  1. Experimental data for p-type DMS films.
    Figure 1: Experimental data for p-type DMS films.

    a, Temperature dependence of the magnetization in (Ge,Mn)Te with high (circles) and low (triangles) hole concentrations. b, TC as a function of saturation magnetization for annealed (Ga,Mn)As films grown in various molecular beam epitaxy (MBE) systems. TC approaches 200 K for an effective Mn concentration of less than 10%. Figures reproduced with permission from: a, ref. 28, © 2008 AIP; b, ref. 30, © 2008 AIP.

  2. Experimental energies of Mn levels in the gaps of III-V compounds, with respect to the valence-band edges.
    Figure 2: Experimental energies of Mn levels in the gaps of III–V compounds, with respect to the valence-band edges.

    Bars show relative positions of valence band tops; points depict Mn acceptor levels. Reproduced with permission from ref. 56, © 2002 APS.

  3. Predictions of the p-d Zener model compared with experimental data for p-type (III,Mn)V DMSs.
    Figure 3: Predictions of the pd Zener model compared with experimental data for p-type (III,Mn)V DMSs.

    a, computed values of TC for various p-type semiconductors containing 5% Mn and 3.5 × 1020 holes cm−3 (the value for (In,Mn)Sb is taken from ref. 69). Reproduced with permission from ref. 21, © 2000 AAAS. b, Highest reported values for (Ga,Mn)P (ref. 65), (Ga,Mn)As (refs 29, 30), (In,Mn)As (ref. 66), (Ga,Mn)Sb (ref. 67) and (In,Mn)Sb (ref. 68).

  4. Dependence of TC on the concentration of magnetic impurities and density of hole states at the Fermi level for weak and strong coupling.
    Figure 4: Dependence of TC on the concentration of magnetic impurities and density of hole states at the Fermi level for weak and strong coupling.

    Higher values of TC are predicted within the virtual-crystal approximation (VCA) and the molecular-field approximation for strong coupling. However, the region where the holes are localized and do not mediate the spin–spin interaction is wider in the strong-coupling case. Reproduced with permission from ref. 57, © 2008 APS.

  5. Resistive indications of ferromagnetism in p-Zn0.981Mn0.019Te:N and n-Zn0.97Mn0.03O:Al.
    Figure 5: Resistive indications of ferromagnetism in p-Zn0.981Mn0.019Te:N and n-Zn0.97Mn0.03O:Al.

    a, The temperature dependence of the hysteresis widths at low temperatures and the magnetic susceptibility measurements above 2 K indicate that TC = 1.45 ± 0.05 K in p-Zn0.981Mn0.019Te:N with a hole concentration of 1.2 × 1020 cm−3. b, The temperature and field scales are an order of magnitude smaller in n-Zn0.97Mn0.03O:Al with an electron concentration of 1.4 × 1020 cm−3, where TC = 160 ± 20 mK. Solid lines show changes of longitudinal resistivity in the magnetic field, ΔRxx, as measured for decreasing (blue arrows) and increasing (red arrows) the field. Curves obtained at different temperatures are vertically shifted for clarity. The width of the hysteresis loops is seen to increase on lowering the temperature. Figures reproduced with permission from: a, ref. 80, © 2001 APS; b, ref. 81, © 2001 Springer.

  6. Evidence for crystallographic and chemical phase separations in DMSs.
    Figure 6: Evidence for crystallographic and chemical phase separations in DMSs.

    a, Synchrotron X-ray diffraction (main panel) and transmission electron microscopy (inset) results for (Ga,Fe)N, showing the precipitation of hexagonal ε-Fe3N nanocrystals. c.p.s., counts per second; Θ, diffraction angle. Modified from ref. 89, © 2008 APS. b, Element-specific synchrotron radiation microprobe analysis of (Ga,Mn)N showing aggregation of Mn cations. X-ray fluorescence spectra are shown for Mn-poor and Mn-rich regions (low (Mn) and high (Mn), respectively). Red, blue and green in the middle panels correspond to the spatially resolved Mn-Kα, Ga-Kα fluorescence line and inelastic (Compton) scattering signal, respectively. Ga (black) and Mn (red) profiles along the white scan line are shown in the lowest panel, indicating the formation of regions rich in Mn and Ga. Reproduced with permission from ref. 78, © 2005 AIP.

  7. Formation of nanocolumns DMSs by aggregation of transition-metal cations.
    Figure 7: Formation of nanocolumns DMSs by aggregation of transition-metal cations.

    a, Mn-rich nanocolumns in (Ge,Mn) shown by high-resolution transmission electron microscopy (left, plan view showing nanocolumns as dots on the surface) and Mn chemical maps (right, bright regions show Mn atoms substituting Ge in the invisible Ge lattice). b, Monte Carlo simulation of chemical phase separation in (Zn,Cr)Te with seeding to initiate the growth of nanocolumns and control of their diameter by Cr flux; pink points show positions of Cr atoms substituting Zn in the invisible ZnTe lattice. Figures reproduced with permission from: a, ref. 93, © 2006 NPG; b, ref. 95, © 2007 Wiley.

  8. Computed energy change Ed in ZnTe and GaAs.
    Figure 8: Computed energy change Ed in ZnTe and GaAs.

    Energy change (pairing energy) resulting from bringing two Cr impurities to the nearest-neighbour cation positions, as a function of the number of holes in the Cr d5 shell. Reproduced with permission from ref. 103, © 2008 IOP.


  1. Story, T., Galazka, R. R., Frankel, R. B. & Wolff, P. A. Carrier-concentration-induced ferromagnetism in PbSnMnTe. Phys. Rev. Lett. 56, 777779 (1986).
  2. Ohno, H., Munekata, H., Penney, T., von Molnàr, S. & Chang, L. L. Magnetotransport properties of p-type (In, Mn)As diluted magnetic III-V semiconductors. Phys. Rev. Lett. 68, 26642667 (1992).
  3. Ohno, H. et al. (Ga, Mn)As: a new diluted magnetic semiconductor based on GaAs. Appl. Phys. Lett. 69, 363365 (1996).
  4. Van Esch, A. et al. Interplay between the magnetic and transport properties in the III-V diluted magnetic semiconductor Ga1−xMnxAs. Phys. Rev. B 56, 1310313112 (1997).
  5. Haury, A. et al. Observation of a ferromagnetic transition induced by two-dimensional hole gas in modulation-doped CdMnTe quantum wells. Phys. Rev. Lett. 79, 511514 (1997).
  6. Ferrand, D. et al. Carrier-induced ferromagnetic interactions in p-doped Zn1−xMnxTe epilayers. J. Cryst. Growth 214–215, 387390 (2000).
  7. Awschalom, D. D. & Flatté, M. E. Challenges for semiconductor spintronics. Nature Phys. 3, 153159 (2007).
  8. Dietl, T., Awschalom, D. D., Kaminska, M. & Ohno, H. (eds) Spintronics (Semiconductors and Semimetals 82, Elsevier, 2008).
  9. Ohno, Y. et al. Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature 402, 790792 (1999).
  10. Ohno, H. et al. Electric-field control of ferromagnetism. Nature 408, 944946 (2000).
  11. Chiba, D. et al. Magnetization vector manipulation by electric fields. Nature 455, 515518 (2008).
  12. Chernyshov, A. et al. Evidence for reversible control of magnetization in a ferromagnetic material by means of spin–orbit magnetic field. Nature Phys. 5, 656659 (2009).
  13. Gould, C. et al. Tunnelling anisotropic magnetoresistance: a spin-valve like tunnel magnetoresistance using a single magnetic layer. Phys. Rev. Lett. 93, 117203 (2004).
  14. Wunderlich, J. et al. Coulomb blockade anisotropic magnetoresistance effect in a (Ga, Mn)As single-electron transistor. Phys. Rev. Lett. 97, 077201 (2006).
  15. Yamanouchi, M., Chiba, D., Matsukura, F. & Ohno, H. Current-induced domain-wall switching in a ferromagnetic semiconductor structure. Nature 428, 539541 (2004).
  16. Matsumoto, Y. et al. Room temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science 291, 854856 (2001).
  17. Bonanni, A. & Dietl, T. A story of high-temperature ferromagnetism in semiconductors. Chem. Soc. Rev. 39, 528539 (2010).
  18. Sheu, B. L. et al. Onset of ferromagnetism in low-doped Ga1−xMnxAs. Phys. Rev. Lett. 99, 227205 (2007).
  19. Sawicki, M. et al. Experimental probing of the interplay between ferromagnetism and localization in (Ga,Mn)As. Nature Phys. 6, 2225 (2010).
  20. Richardella, A. et al. Visualizing critical correlations near the metal-insulator transition in Ga1−xMnxAs. Science 327, 665669 (2010).
  21. Dietl, T., Ohno, H., Matsukura, F., Cibert, J. & Ferrand, D. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 10191022 (2000).
  22. Matsukura, F., Ohno, H., Shen, A. & Sugawara, Y. Transport properties and origin of ferromagnetism in (Ga,Mn)As. Phys. Rev. B 57, R2037R2040 (1998).
  23. Okabayashi, J. et al. Core-level photoemission study of Ga1−xMnxAs. Phys. Rev. B 58, R4211R4214 (1998).
  24. Linnarsson, M., Janzén, E., Monemar, B., Kleverman, M. & Thilderkvist, A. Electronic structure of the GaAs:MnGa center. Phys. Rev. B 55, 69386944 (1997).
  25. Zener, C. Interaction between the d shells in the transition metals. Phys. Rev. 81, 440444 (1951).
  26. Dietl, T., Haury, A. & d'Aubigne, Y. M. Free carrier-induced ferromagnetism in structures of diluted magnetic semiconductors. Phys. Rev. B 55, R3347R3350 (1997).
  27. Jungwirth, T., Atkinson, W. A., Lee, B. & MacDonald, A. H. Interlayer coupling in ferromagnetic semiconductor superlattices. Phys. Rev. B 59, 98189821 (1999).
  28. Fukuma, Y. et al. Carrier-induced ferromagnetism in Ge0.92Mn0.08Te epilayers with a Curie temperature up to 190 K. Appl. Phys. Lett. 93, 252502 (2008).
  29. Olejník, K. et al. Enhanced annealing, high Curie temperature and low-voltage gating in (Ga,Mn)As: a surface oxide control study. Phys. Rev. B 78, 054403 (2008).
  30. Wang, M. et al. Achieving high Curie temperature in (Ga,Mn)As. Appl. Phys. Lett. 93, 132103 (2008).
  31. Chen, L. et al. Low-temperature magnetotransport behaviors of heavily Mn-doped (Ga,Mn)As films with high ferromagnetic transition temperature. Appl. Phys. Lett. 95, 182505 (2009).
  32. Akai, H. Ferromagnetism and its stability in the diluted magnetic semiconductor (In,Mn)As. Phys. Rev. Lett. 81, 30023005 (1998).
  33. Sato, K., Dederichs, P. H. & Katayama-Yoshida, H. Curie temperatures of III-V diluted magnetic semiconductors calculated from first principles. Europhys. Lett. 61, 403408 (2003).
  34. Mahadevan, P. & Zunger, A. Trends in ferromagnetism, hole localization, and acceptor level depth for Mn substitution in GaN, GaP, GaAs, GaSb. Appl. Phys. Lett. 85, 28602862 (2004).
  35. Burch, K., Awschalom, D. & Basov, D. Optical properties of III-Mn-V ferromagnetic semiconductors. J. Magn. Magn. Mater. 320, 32073228 (2008).
  36. Alberi, K. et al. Formation of Mn-derived impurity band in III-Mn-V alloys by valence band anticrossing. Phys. Rev. B 78, 075201 (2008).
  37. Liu, C., Yun, F.& Morkoç, H. Ferromagnetism of ZnO and GaN: a review. J. Mater. Sci. Mater. Electron. 16, 555597 (2005).
  38. Coey, J. M. D. Dilute magnetic oxides. Curr. Opin. Solid State Mater. Sci. 10, 8392 (2006).
  39. Bonanni, A. Ferromagnetic nitride-based semiconductors doped with transition metals and rare earths. Semicond. Sci. Technol. 22, R41R56 (2007).
  40. Sato, K. et al. First-principles theory of dilute magnetic semiconductors. Rev. Mod. Phys. 82, 16331690 (2010).
  41. Blinowski, J., Kacman, P. & Majewski, J. A. Ferromagnetic superexchange in Cr-based diluted magnetic semiconductors. Phys. Rev. B 53, 95249527 (1996).
  42. Walsh, A., Da Silva, J. L. F. & Wei, S-H. Theoretical description of carrier mediated magnetism in cobalt doped ZnO. Phys. Rev. Lett. 100, 256401 (2008).
  43. Coey, J. M. D., Venkatesan, M. & Fitzgerald, C. B. Donor impurity band exchange in dilute ferromagnetic oxides. Nature Mater. 4, 173179 (2005).
  44. Wang, Q., Sun, Q., Jena, P. & Kawazoe, Y. Magnetic properties of transition-metal-doped Zn1− xTxO (T = Cr, Mn, Fe, Co, and Ni) thin films with and without intrinsic defects: a density functional study. Phys. Rev. B 79, 115407 (2009).
  45. Park, C. H. & Chadi, D. J. Hydrogen-mediated spin-spin interaction in ZnCoO. Phys. Rev. Lett. 94, 127204 (2005).
  46. Coey, J. M. D., Wongsaprom, K., Alaria, J. & Venkatesan, M. Charge-transfer ferromagnetism in oxide nanoparticles. J. Phys. D 41, 134012 (2008).
  47. Dietl, T. Dilute magnetic semiconductors: functional ferromagnets. Nature Mater. 2, 646648 (2003).
  48. Cho, Y. J., Yu, K. M., Liu, X., Walukiewicz, W. & Furdyna, J. K. Effects of donor doping on Ga1−xMnxAs. Appl. Phys. Lett. 93, 262505 (2008).
  49. Mayer, M. A. et al. Electronic structure of Ga1−xMnxAs analyzed according to hole-concentration-dependent measurements. Phys. Rev. B 81, 045205 (2010).
  50. Jungwirth, T. et al. Character of states near the Fermi level in (Ga,Mn)As: impurity to valence band crossover. Phys. Rev. B 76, 125206 (2007).
  51. Dietl, T. Interplay between carrier localization and magnetism in diluted magnetic and ferromagnetic semiconductors. J. Phys. Soc. Jpn 77, 031005 (2008).
  52. Altshuler, B. L. & Aronov, A. G. in Electron-Electron Interactions in Disordered Systems (eds Efros, A. L. & Pollak, M.) 1153 (North Holland, 1985).
  53. Lee, P. A. & Ramakrishnan, T. V. Disordered electronic systems. Rev. Mod. Phys. 57, 287337 (1985).
  54. Belitz, D. & Kirkpatrick, T. R. The Anderson-Mott transition. Rev. Mod. Phys. 66, 261380 (1994).
  55. Edwards, P. P. & Sienko, M. J. Universality aspects of the metal-nonmetal transition in condensed media. Phys. Rev. B 17, 25752581 (1978).
  56. Dietl, T., Matsukura, F. & Ohno, H. Ferromagnetism of magnetic semiconductors: Zhang-Rice limit. Phys. Rev. B 66, 033203 (2002).
  57. Dietl, T. Hole states in wide band-gap diluted magnetic semiconductors and oxides. Phys. Rev. B 77, 085208 (2008).
  58. Neumaier, D. et al. All-electrical measurement of the density of states in (Ga,Mn)As. Phys. Rev. Lett. 103, 087203 (2009).
  59. Boukari, H. et al. Light and electric field control of ferromagnetism in magnetic quantum structures. Phys. Rev. Lett. 88, 207204 (2002).
  60. Nishitani, Y. et al. Curie temperature versus hole concentration in field-effect structures of Ga1−xMnxAs. Phys. Rev. B 81, 045208 (2010).
  61. MacDonald, A. H., Schiffer, P. & Samarth, N. Ferromagnetic semiconductors: moving beyond (Ga,Mn)As. Nature Mater. 4, 195202 (2005).
  62. Edmonds, K. W. et al. High Curie temperature GaMnAs obtained by resistance-monitored annealing. Appl. Phys. Lett. 81, 49914993 (2002).
  63. Cho, Y. J., Liu, X. & Furdyna, J. K. Collapse of ferromagnetism in (Ga,Mn)As at high hole concentrations. Semicond. Sci. Technol. 23, 125010 (2008).
  64. Furdyna, J. K. et al. Fermi level effects on Mn incorporation in modulation-doped ferromagnetic III1−xMnxV heterostructures. J. Phys. Condens. Matter 16, S5499S5508 (2004).
  65. Scarpulla, M. A. et al. Ferromagnetism in Ga1−xMnxP: evidence for inter-Mn exchange mediated by localized holes within a detached impurity band. Phys. Rev. Lett. 95, 207204 (2005).
  66. Schallenberg, T. & Munekata, H. Preparation of ferromagnetic (In,Mn)As with a high Curie temperature of 90 K. Appl. Phys. Lett. 89, 042507 (2006).
  67. Abe, E., Matsukura, F., Yasuda, H., Ohno, Y. & Ohno, H. Molecular beam epitaxy of III-V diluted magnetic semiconductor (Ga,Mn)Sb. Physica E 7, 981985 (2000).
  68. Wojtowicz, T. et al. In1−xMnxSb — a new narrow gap ferromagnetic semiconductor. Appl. Phys. Lett. 82, 43104312 (2003).
  69. Jungwirth, T., König, J., Sinova, J., Kučera, J. & MacDonald, A. H. Curie temperature trends in (III,Mn)V ferromagnetic semiconductors. Phys. Rev. B 66, 012402 (2002).
  70. Jungwirth, T., Sinova, J., Mašek, J., Kučera, J. & MacDonald, A. H. Theory of ferromagnetic (III,Mn)V semiconductors. Rev. Mod. Phys. 78, 809864 (2006).
  71. Glunk, M. et al. Magnetic anisotropy in (Ga,Mn)As: influence of epitaxial strain and hole concentration. Phys. Rev. B 79, 195206 (2009).
  72. Kodzuka, M., Ohkubo, T., Hono, K., Matsukura, F. & Ohno, H. 3DAP analysis of (Ga,Mn)As diluted magnetic semiconductor thin film. Ultramicroscopy 109, 644648 (2009).
  73. Yu, K. M. et al. Effect of the location of Mn sites in ferromagnetic Ga1−xMnxAs on its Curie temperature. Phys. Rev. B 65, 201303 (2002).
  74. Wierzbowska, M., Sanchez-Portal, D. & Sanvito, S. Different origin of the ferromagnetic order in (Ga,Mn)As and (Ga,Mn)N. Phys. Rev. B 70, 235209 (2004).
  75. Schulthess, T., Temmerman, W. M., Szotek, Z., Butler, W. H. & Stocks, G. M. Electronic structure and exchange coupling of Mn impurities in III-V semiconductors. Nature Mater. 4, 838844 (2005).
  76. Kitchen, D., Richardella, A., Tang, J-M., Flatte, M. E. & Yazdani, A. Atom-by-atom substitution of Mn in GaAs and visualization of their hole-mediated interactions. Nature 442, 436439 (2006).
  77. Sarigiannidou, E. et al. Intrinsic ferromagnetism in wurtzite (Ga,Mn)N semiconductor. Phys. Rev. B 74, 041306 (2006).
  78. Martinez-Criado, G. et al. Mn-rich clusters in GaN: hexagonal or cubic symmetry? Appl. Phys. Lett. 86, 131927 (2005).
  79. Lipińska, A. et al. Ferromagnetic properties of p-(Cd,Mn)Te quantum wells: interpretation of magneto-optical measurements by Monte Carlo simulations. Phys. Rev. B 79, 235322 (2009).
  80. Ferrand, D. et al. Carrier-induced ferromagnetism in p-Zn1−xMnxTe. Phys. Rev. B 63, 085201 (2001).
  81. Andrearczyk, T. et al. in Proc. 25th Int. Conf. Phys. Semicond. (eds Miura, N. & Ando, T.) 234235 (Springer, 2001).
  82. Serrate, D., Teresa, J. M. D. & Ibarra, M. R. Double perovskites with ferromagnetism above room temperature. J. Phys. Condens. Matter 19, 023201 (2007).
  83. Park, J. H., Kim, M. G., Jang, H. M., Ryu, S. & Kim, Y. M. Co-metal clustering as the origin of ferromagnetism in Co-doped ZnO thin films. Appl. Phys. Lett. 84, 13381340 (2004).
  84. Ney, A. et al. Advanced spectroscopic synchrotron techniques to unravel the intrinsic properties of dilute magnetic oxides: the case of Co:ZnO. N. J. Phys. 12, 013020 (2010).
  85. Bonanni, A. et al. Paramagnetic GaN:Fe and ferromagnetic (Ga,Fe)N: the relationship between structural, electronic, and magnetic properties. Phys. Rev. B 75, 125210 (2007).
  86. Boeck, J. D. et al. Nanometer-scale magnetic MnAs particles in GaAs grown by molecular beam epitaxy. Appl. Phys. Lett. 68, 27442746 (1996).
  87. Moreno, M., Trampert, A., Jenichen, B., Däweritz, L. & Ploog, K. H. Correlation of structure and magnetism in GaAs with embedded Mn(Ga)As magnetic nanoclusters. J. Appl. Phys. 92, 46724677 (2002).
  88. Rovezzi, M. et al. Local structure of (Ga,Fe)N and (Ga,Fe)N:Si investigated by X-ray absorption fine structure spectroscopy. Phys. Rev. B 79, 195209 (2009).
  89. Bonanni, A. et al. Controlled aggregation of magnetic ions in a semiconductor: an experimental demonstration. Phys. Rev. Lett. 101, 135502 (2008).
  90. Tanaka, M., Yokoyama, M., Hai, P. N. & Ohya, S. in Spintronics (eds Dietl, T., Awschalom, D. D., Kaminska, M. & Ohno, H.) 455485 (Semiconductors and Semimetals 82, Elsevier, 2008).
  91. Kuroda, S. et al. Origin and control of high temperature ferromagnetism in semiconductors. Nature Mater. 6, 440446 (2007).
  92. Gu, L. et al. Characterization of Al(Cr)N and Ga(Cr)N dilute magnetic semiconductors. J. Magn. Magn. Mater. 290–291, 13951397 (2005).
  93. Jamet, M. et al. High-Curie-temperature ferromagnetism in self-organized Ge1−xMnx nanocolumns. Nature Mater. 5, 653659 (2006).
  94. Nishio, Y., Ishikawa, K., Kuroda, S., Mitome, M. & Bando, Y. in Mater. Res. Soc. Symp. Proc. Vol. 1183-FF01-11 (Materials Research Society, 2009).
  95. Katayama-Yoshida, H. et al. Theory of ferromagnetic semiconductors. Phys. Status Solidi A 204, 1532 (2007).
  96. Dietl, T. Self-organised growth controlled by charge states of magnetic impurities. Nature Mater. 5, 673 (2006).
  97. Ye, L-H. Freeman, A. J. Defect compensation, clustering, and magnetism in Cr-doped anatase. Phys. Rev. B 73, 081304(R) (2006).
  98. Straumal, B. B. et al. Magnetization study of nanograined pure and Mn-doped ZnO films: formation of a ferromagnetic grain-boundary foam. Phys. Rev. B 79, 205206 (2009).
  99. Ney, A. et al. Absence of intrinsic ferromagnetic interactions of isolated and paired Co dopant atoms in Zn1−xCoxO with high structural perfection. Phys. Rev. Lett. 100, 157201 (2008).
  100. van Schilfgaarde, M. & Mryasov, O. N. Anomalous exchange interactions in III-V dilute magnetic semiconductors. Phys. Rev. B 63, 233205 (2001).
  101. Zunger, A. in Solid State Physics Vol. 39 (eds Seitz, F. & Turnbull, D.) 275464 (Academic, 1986).
  102. Furdyna, J. K. & Kossut, J. (eds) Diluted Magnetic Semiconductors (Semiconductors and Semimetals 25, Academic, 1988).
  103. Da Silva, J. L. F., Dalpian, G. M. & Wei, S-H. Carrier-induced enhancement and suppression of ferromagnetism in Zn1−xCrxTe and Ga1−xCrxAs: origin of the spinodal decomposition. N. J. Phys. 10, 113007 (2008).
  104. Hai, P. N., Ohya, S., Tanaka, M., Barnes, S. E. & Maekawa, S. Electromotive force and huge magnetoresistance in magnetic tunnel junctions. Nature 458, 489492 (2007).
  105. Katayama-Yoshida, H., Sato, K., Fukushima, T. & Toyoda, M. H. K. & Dinh, V. A. in Spintronics (eds Dietl, T., Awschalom, D. D., Kaminska, M. & Ohno, H.) 433454 (Semiconductors and Semimetals 82, Elsevier, 2008).
  106. Geshi, M., Kusakabe, K., Tsukamoto, H. & Suzuki, N. A new ferromagnetic material excluding transition metals: CaAs in a distorted zinc-blende structure. AIP Conf. Proc. 772, 327328 (2005).
  107. Volnianska, O. & Boguslawski, P. Magnetism of solids resulting from spin polarization of p orbitals. J. Phys. Condens. Matter 22, 073202 (2010).
  108. Elfimov, I. S., Yunoki, S. & Sawatzky, G. A. Possible path to a new class of ferromagnetic and half-metallic ferromagnetic materials. Phys. Rev. Lett. 89, 216403 (2002).
  109. Sliwa, C. & Dietl, T. Electron-hole contribution to the apparent s-d exchange interaction in III-V dilute magnetic semiconductors. Phys. Rev. B 78, 165205 (2008).
  110. Grace, P. J. et al. The origin of the magnetism of etched silicon. Adv. Mater. 21, 7174 (2009).
  111. Sperl, M. et al. Identifying the character of ferromagnetic Mn in epitaxial Fe/(Ga,Mn)As heterostructures. Phys. Rev. B 81, 035211 (2010).
  112. Shick, A. B., Khmelevskyi, S., Mryasov, O. N., Wunderlich, J. & Jungwirth, T. Spin-orbit coupling induced anisotropy effects in bimetallic antiferromagnets: a route towards antiferromagnetic spintronics. Phys. Rev. B 81, 212409 (2010).

Download references

Author information


  1. Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, PL-02-668 Warszawa, Poland

    • Tomasz Dietl
  2. Institute of Theoretical Physics, University of Warsaw, PL-00-681 Warszawa, Poland.

    • Tomasz Dietl

Competing financial interests

The author declares no competing financial interests.

Corresponding author

Correspondence to:

Author details

Additional data