Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

DNA-controlled assembly of a NaTl lattice structure from gold nanoparticles and protein nanoparticles

Abstract

The formation of diamond structures from tailorable building blocks is an important goal in colloidal crystallization because the non-compact diamond lattice is an essential component of photonic crystals for the visible-light range1,2,3,4,5,6,7. However, designing nanoparticle systems that self-assemble into non-compact structures has proved difficult. Although several methods have been proposed7,8,9,10, single-component nanoparticle assembly of a diamond structure has not been reported. Binary systems, in which at least one component is arranged in a diamond lattice, provide alternatives7,11,12, but control of interparticle interactions is critical to this approach. DNA has been used for this purpose in a number of systems13,14,15,16,17,18. Here we show the creation of a non-compact lattice by DNA-programmed crystallization using surface-modified Qβ phage capsid particles and gold nanoparticles, engineered to have similar effective radii. When combined with the proper connecting oligonucleotides, these components form NaTl-type colloidal crystalline structures containing interpenetrating organic and inorganic diamond lattices, as determined by small-angle X-ray scattering. DNA control of assembly is therefore shown to be compatible with particles possessing very different properties, as long as they are amenable to surface modification.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DNA-programmable nanoparticle crystallization method.
Figure 2: Formation of a NaTl structure and theoretical scattering pattern.
Figure 3: Formation of VLP and AuNPs.
Figure 4: Assembly of a NaTl alloy structure using DNA-linked AuNPs and DNA-linked VLPs.

Similar content being viewed by others

Mingxin He, Johnathon P. Gales, … David J. Pine

References

  1. Joannopoulos, J. D., Johnson, S. G., Winn, J. N. & Meade, R. D. Photonic Crystals: Molding the Flow of Light (Princeton University Press, 2008).

    Google Scholar 

  2. Norris, D. J. Photonic crystals: A view of the future. Nature Mater. 6, 177–178 (2007).

    Article  CAS  Google Scholar 

  3. Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).

    Article  CAS  Google Scholar 

  4. John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987).

    Article  CAS  Google Scholar 

  5. Ho, K. M., Chan, C. T. & Soukoulis, C. M. Existence of a photonic gap in periodic dielectric structures. Phys. Rev. Lett. 65, 3152–3155 (1990).

    Article  CAS  Google Scholar 

  6. Ngo, T. T., Liddell, C. M., Ghebrebrhan, M. & Joannopoulos, J. D. Tetrastack: Colloidal diamond-inspired structure with omnidirectional photonic band gap for low refractive index contrast. Appl. Phys. Lett. 88, 241920 (2006).

    Article  Google Scholar 

  7. Hynninen, A. P., Thijssen, J. H. J., Vermolen, E. C. M., Dijkstra, M. & Van Blaaderen, A. Self-assembly route for photonic crystals with a bandgap in the visible region. Nature Mater. 6, 202–205 (2007).

    Article  CAS  Google Scholar 

  8. Nelson, D. R. Toward a tetravalent chemistry of colloids. Nano Lett. 2, 1125–1129 (2002).

    Article  CAS  Google Scholar 

  9. Tkachenko, A. V. Morphological diversity of DNA-colloidal self-assembly. Phys. Rev. Lett. 89, 148303 (2002).

    Article  Google Scholar 

  10. Kalsin, A. M. et al. Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice. Science 312, 420–424 (2006).

    Article  CAS  Google Scholar 

  11. Garcia-Santamaria, F. et al. Opal-like photonic crystal with diamond lattice. Appl. Phys. Lett. 79, 2309–2311 (2001).

    Article  CAS  Google Scholar 

  12. Garcia-Santamaria, F. et al. Nanorobotic manipulation of microspheres for on-chip diamond architectures. Adv. Mater. 14, 1144–1147 (2002).

    Article  CAS  Google Scholar 

  13. Mirkin, C. A., Letsinger, R. L., Mucic, R. C. & Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).

    Article  CAS  Google Scholar 

  14. Alivisatos, A. P. et al. Organization of ‘nanocrystal molecules’ using DNA. Nature 382, 609–611 (1996).

    Article  CAS  Google Scholar 

  15. Biancaniello, P. L., Kim, A. J. & Crocker, J. C. Colloidal interactions and self-assembly using DNA hybridization. Phys. Rev. Lett. 94, 058302 (2005).

    Article  Google Scholar 

  16. Nykypanchuk, D., Maye, M. M., van der Lelie, D. & Gang, O. DNA-guided crystallization of colloidal nanoparticles. Nature 451, 549–552 (2008).

    Article  CAS  Google Scholar 

  17. Park, S. Y. et al. DNA-programmable nanoparticle crystallization. Nature 451, 553–556 (2008).

    Article  CAS  Google Scholar 

  18. Hill, H. D. et al. Controlling the lattice parameters of gold nanoparticle FCC crystals with duplex DNA linkers. Nano Lett. 8, 2341–2344 (2008).

    Article  CAS  Google Scholar 

  19. Christensen, N. E. Structural phase stability of B2 and B32 intermetallic compounds. Phys. Rev. B 32, 207–228 (1985).

    Article  CAS  Google Scholar 

  20. Hong, L. B. & Fultz, B. Phase diagrams of bcc alloys at low temperatures with ballistic atom movements. Phys. Rev. B 52, 6230–6237 (1995).

    Article  CAS  Google Scholar 

  21. Hoogerbrugge, P. J. & Koelman, J. M. V. A. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys. Lett. 19, 155–160 (1992).

    Article  Google Scholar 

  22. Español, P. & Warren, P. Statistical mechanics of dissipative particle dynamics. Europhys. Lett. 30, 191–196 (1995).

    Article  Google Scholar 

  23. Lee, J. & Choi, M. Y. Optimization by multicanonical annealing and the travelling salesman problem. Phys. Rev. E 50, R651–R654 (1994).

    Article  CAS  Google Scholar 

  24. Strable, E., Johnson, J. E. & Finn, M. G. Natural nanochemical building blocks: Icosahedral virus particles organized by attached oligonucleotides. Nano Lett. 4, 1385–1389 (2004).

    Article  CAS  Google Scholar 

  25. Prasuhn, D. E. et al. Plasma clearance of bacteriophage Q particles as a function of surface charge. J. Am. Chem. Soc. 130, 1328–1334 (2008).

    Article  CAS  Google Scholar 

  26. Kaltgrad, E. et al. On-virus construction of polyvalent glycan ligands for cell-surface receptors. J. Am. Chem. Soc. 130, 4578–4579 (2008).

    Article  CAS  Google Scholar 

  27. Hong, V. et al. Analysis and optimization of copper-catalyzed azide–alkyne cycloaddition for bioconjugation. Angew. Chem. Int. Edn 48, 9879–9883 (2009).

    Article  CAS  Google Scholar 

  28. Ozin, G. A., Arsenault, A. C. & Cademartiri, L. Nanochemistry: A Chemical Approach to Nanomaterials 2nd edn (Royal Society of Chemistry, 2009).

    Google Scholar 

Download references

Acknowledgements

S.Y.P. was supported by NIH grant AI083115; P.C. and M.G.F. were supported by NIH grant RR021886, the Skaggs Institute for Chemical Biology and the W.M. Keck Foundation; A.K.R.L-J. and D.G.A. were supported by a grant from Alnylam Pharmaceuticals and the NIH DE016516. S.Y.P. thanks B. Lee, S. Weigand, S. Dewhurst, R. Langer, M. Rho, O. Lee, G. C. Schatz, G. Oberdörster and C. A. Mirkin for useful discussions. These studies benefited from the use of the APS at the Argonne National Laboratory supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Contributions

P.C., A.K.R.L-J., D.G.A. and M.G.F. were responsible for the synthetic components of the project. P.C. and M.G.F. designed the structure of DNA-linked virus capsids. A.K.R.L-J. and S.Y.P. designed DNA-linked nanoparticles and the DNA sequences. S.Y.P. was responsible for the theoretical components and the overall experimental design of the project. S.Y.P. carried out SAXS experiments and analysed the SAXS data. All authors contributed to the writing of the manuscript.

Corresponding authors

Correspondence to M. G. Finn or Sung Yong Park.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 720 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cigler, P., Lytton-Jean, A., Anderson, D. et al. DNA-controlled assembly of a NaTl lattice structure from gold nanoparticles and protein nanoparticles. Nature Mater 9, 918–922 (2010). https://doi.org/10.1038/nmat2877

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2877

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing