Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Material properties of the cell dictate stress-induced spreading and differentiation in embryonic stem cells

Abstract

Growing evidence suggests that physical microenvironments and mechanical stresses, in addition to soluble factors, help direct mesenchymal-stem-cell fate. However, biological responses to a local force in embryonic stem cells remain elusive. Here we show that a local cyclic stress through focal adhesions induced spreading in mouse embryonic stem cells but not in mouse embryonic stem-cell-differentiated cells, which were ten times stiffer. This response was dictated by the cell material property (cell softness), suggesting that a threshold cell deformation is the key setpoint for triggering spreading responses. Traction quantification and pharmacological or shRNA intervention revealed that myosin II contractility, F-actin, Src or cdc42 were essential in the spreading response. The applied stress led to oct3/4 gene downregulation in mES cells. Our findings demonstrate that cell softness dictates cellular sensitivity to force, suggesting that local small forces might have far more important roles in early development of soft embryos than previously appreciated.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cell softness dictates cell spreading response to stress.
Figure 2: Stress-induced spreading in mES cells correlates with accumulation of phosphorylated myosin light chain and elevation of tractions at the cell edge.
Figure 3: Stress-induced ES cell spreading depends on myosin II activity, Src and cdc42, but not on Rac activity.
Figure 4: A local cyclic stress substantially diminishes oct3/4 expression in mES cells.

Similar content being viewed by others

References

  1. Daley, G. Q. & Scadden, D. T. Prospects for stem cell-based therapy. Cell 132, 544–548 (2008).

    Article  CAS  Google Scholar 

  2. Dimos, J. T. et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321, 1218–1221 (2008).

    Article  CAS  Google Scholar 

  3. Soldner, F. et al. Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136, 964–977 (2009).

    Article  CAS  Google Scholar 

  4. Park, I. H. et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451, 141–146 (2008).

    Article  CAS  Google Scholar 

  5. Egli, D., Birkhoff, G. & Eggan, K. Mediators of reprogramming: Transcription factors and transitions through mitosis. Nature. Rev. Mol. Cell Biol. 9, 505–516 (2008).

    Article  CAS  Google Scholar 

  6. McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K. & Chen, C. S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6, 483–495 (2004).

    Article  CAS  Google Scholar 

  7. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    Article  CAS  Google Scholar 

  8. Wu, C. C. et al. Directional shear flow and Rho activation prevent the endothelial cell apoptosis induced by micropatterned anisotropic geometry. Proc. Natl Acad. Sci. USA. 104, 1254–1259 (2007).

    Article  CAS  Google Scholar 

  9. Katsumi, A. et al. Effects of cell tension on the small GTPase Rac. J. Cell Biol. 158, 153–164 (2002).

    Article  CAS  Google Scholar 

  10. Kurpinski, K., Chu, J., Hashi, C. & Li, S. Anisotropic mechanosensing by mesenchymal stem cells. Proc. Natl Acad. Sci. USA. 103, 16095–16100 (2006).

    Article  CAS  Google Scholar 

  11. Adamo, L. et al. Biomechanical forces promote embryonic haematopoiesis. Nature 459, 1131–1135 (2009).

    Article  CAS  Google Scholar 

  12. Discher, D. E., Janmey, P. & Wang, Y. L. Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143 (2005).

    Article  CAS  Google Scholar 

  13. Vogel, V. & Sheetz, M. Local force and geometry sensing regulate cell functions. Nature. Rev. Mol. Cell Biol. 7, 265–275 (2006).

    Article  CAS  Google Scholar 

  14. Mammoto, A. et al. A mechanosensitive transcriptional mechanism that controls angiogenesis. Nature 457, 1103–1108 (2009).

    Article  CAS  Google Scholar 

  15. del Rio, A. et al. Stretching single talin rod molecules activates vinculin binding. Science 323, 638–641 (2009).

    Article  CAS  Google Scholar 

  16. Mizuno, D., Tardin, C., Schmidt, C. F. & Mackintosh, F. C. Nonequilibrium mechanics of active cytoskeletal networks. Science 315, 370–373 (2007).

    Article  CAS  Google Scholar 

  17. Weitz, D. A. & Janmey, P. A. The soft framework of the cellular machine. Proc. Natl Acad. Sci. USA. 105, 1105–1106 (2008).

    Article  CAS  Google Scholar 

  18. Trepat, X. et al. Universal physical responses to stretch in the living cell. Nature 447, 592–595 (2007).

    Article  CAS  Google Scholar 

  19. Friedland, J. C., Lee, M. H. & Boettiger, D. Mechanically activated integrin switch controls alpha5beta1 function. Science 323, 642–644 (2009).

    Article  CAS  Google Scholar 

  20. Johnson, C. P., Tang, H. Y., Carag, C., Speicher, D. W. & Discher, D. E. Forced unfolding of proteins within cells. Science 317, 663–666 (2007).

    Article  CAS  Google Scholar 

  21. Scholer, H. R., Ruppert, S., Suzuki, N., Chowdhury, K. & Gruss, P. New type of POU domain in germ line-specific protein Oct-4. Nature 344, 435–439 (1990).

    Article  CAS  Google Scholar 

  22. Solon, J., Levental, I., Sengupta, K., Georges, P. C. & Janmey, P. A. Fibroblast adaptation and stiffness matching to soft elastic substrates. Biophys. J. 93, 4453–4461 (2007).

    Article  CAS  Google Scholar 

  23. Engler, A. J. et al. Myotubes differentiate optimally on substrates with tissue-like stiffness: Pathological implications for soft or stiff microenvironments. J. Cell Biol. 166, 877–887 (2004).

    Article  CAS  Google Scholar 

  24. Dubin-Thaler, B. J. et al. Quantification of cell edge velocities and traction forces reveals distinct motility modules during cell spreading. PLoS ONE 3, e3735 (2008).

    Article  Google Scholar 

  25. Hu, S. & Wang, N. Control of stress propagation in the cytoplasm by prestress and loading frequency. Mol. Cell Biomech. 3, 49–60 (2006).

    Google Scholar 

  26. Wang, N., Butler, J. P. & Ingber, D. E. Mechanotransduction across the cell surface and through the cytoskeleton. Science 260, 1124–1127 (1993).

    Article  CAS  Google Scholar 

  27. Wang, N., Ostuni, E., Whitesides, G. M. & Ingber, D. E. Micropatterning tractional forces in living cells. Cell. Motil. Cytoskeleton 52, 97–106 (2002).

    Article  Google Scholar 

  28. Na, S. et al. Rapid signal transduction in living cells is a unique feature of mechanotransduction. Proc. Natl Acad. Sci. USA. 105, 6626–6631 (2008).

    Article  CAS  Google Scholar 

  29. Zhang, X. et al. Talin depletion reveals independence of initial cell spreading from integrin activation and traction. Nature. Cell Biol. 10, 1062–1068 (2008).

    Article  CAS  Google Scholar 

  30. Gao, Y., Dickerson, J. B., Guo, F., Zheng, J. & Zheng, Y. Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proc. Natl Acad. Sci. USA. 101, 7618–7623 (2004).

    Article  CAS  Google Scholar 

  31. Habib, A. et al. Modulation of COX-2 expression by statins in human monocytic cells. FASEB J. 21, 1665–1674 (2007).

    Article  CAS  Google Scholar 

  32. Price, L. S., Leng, J., Schwartz, M. A. & Bokoch, G. M. Activation of Rac and Cdc42 by integrins mediates cell spreading. Mol. Biol. Cell 9, 1863–1871 (1998).

    Article  CAS  Google Scholar 

  33. D’Souza-Schorey, C., Boettner, B. & Van Aelst, L. Rac regulates integrin-mediated spreading and increased adhesion of T lymphocytes. Mol. Cell. Biol. 18, 3936–3946 (1998).

    Article  Google Scholar 

  34. Smith, A. G. et al. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 336, 688–690 (1988).

    Article  CAS  Google Scholar 

  35. Walker, E. et al. Prediction and testing of novel transcriptional networks regulating embryonic stem cell self-renewal and commitment. Cell Stem Cell 1, 71–86 (2007).

    Article  CAS  Google Scholar 

  36. Wozniak, M. A. & Chen, C. S. Mechanotransduction in development: A growing role for contractility. Nature Rev. Mol. Cell Biol. 10, 34–43 (2009).

    Article  CAS  Google Scholar 

  37. Discher, D. E., Mooney, D. J. & Zandstra, P.W. Growth factors, matrices, and forces combine and control stem cells. Science 324, 1673–1677 (2009).

    Article  CAS  Google Scholar 

  38. Pajerowski, J. D., Dahl, K. N., Zhong, F. L., Sammak, P. J. & Discher, D. E. Physical plasticity of the nucleus in stem cell differentiation. Proc. Natl Acad. Sci. USA. 104, 15619–15624 (2007).

    Article  CAS  Google Scholar 

  39. Kong, F., García, A. J., Mould, A. P., Humphries, M. J. & Zhu, C. Demonstration of catch bonds between an integrin and its ligand. J. Cell Biol. 185, 1275–84 (2009).

    Article  CAS  Google Scholar 

  40. Giannone, G. & Sheetz, M. P. Substrate rigidity and force define form through tyrosine phosphatase and kinase pathways. Trends Cell Biol. 16, 213–23 (2006).

    Article  CAS  Google Scholar 

  41. Wang, N., Tytell, J. D. & Ingber, D. E. Mechanotransduction at a distance: Mechanically coupling the extracellular matrix with the nucleus. Nature. Rev. Mol. Cell Biol. 10, 75–82 (2009).

    Article  CAS  Google Scholar 

  42. Geiger, B., Spatz, J. P. & Bershadsky, A. D. Environmental sensing through focal adhesions. Nature Rev. Mol. Cell Biol. 10, 21–33 (2009).

    Article  CAS  Google Scholar 

  43. Valentine, M. T., Perlman, Z. E., Mitchison, T. J. & Weitz, D. A. Mechanical properties of Xenopus egg cytoplasmic extracts. Biophys. J. 88, 680–689 (2005).

    Article  CAS  Google Scholar 

  44. Fabry, B. et al. Scaling the microrheology of living cells. Phys. Rev. Lett. 87, 148102 (2001).

    Article  CAS  Google Scholar 

  45. Engler, A. J. Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: Scar-like rigidity inhibits beating. J. Cell Sci. 121, 3794–802 (2008).

    Article  CAS  Google Scholar 

  46. Krishnan, R. et al. Reinforcement versus fluidization in cytoskeletal mechanoresponsiveness. PLoS One 4, e5486 (2009).

    Article  Google Scholar 

  47. Zhou, J. et al. mTOR supports long-term self-renewal and suppresses mesoderm and endoderm activities of human embryonic stem cells. Proc. Natl Acad. Sci. USA. 106, 7840–7845 (2009).

    Article  CAS  Google Scholar 

  48. Chowdhury, F. et al. Is cell rheology governed by nonequilibrium-to-equilibrium transition of noncovalent bonds? Biophys. J. 95, 5719–5727 (2008).

    Article  CAS  Google Scholar 

  49. Panettieri, R. A., Murray, R. K., DePalo, L. R., Yadvish, P. A. & Kotlikoff, M. I. A human airway smooth muscle cell line that retains physiological responsiveness. Am. J. Physiol. Cell Physiol. 25, C329–C335 (1989).

    Article  Google Scholar 

  50. Bursac, P. et al. Cytoskeletal remodelling and slow dynamics in the living cell. Nature Mater. 4, 557–561 (2005).

    Article  CAS  Google Scholar 

  51. Viswanathan, S. et al. Supplementation-dependent differences in the rates of embryonic stem cell self-renewal, differentiation, and apoptosis. Biotechnol. Bioeng. 84, 505–517 (2003).

    Article  CAS  Google Scholar 

  52. Vintersten, K. et al. Mouse in red: Red fluorescent protein expression in mouse ES cells, embryos, and adult animals. Genesis 40, 241–246 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Hong and K. Moore for their assistance. We thank R. Panettieri for providing human ASM cells. This work was supported by NIH grants GM072744 (to N.W.), GM083812 (to F.W.), the USDA Cooperative State Research, Education and Extension Service, Hatch project ILLU-538-323 (to T.S.T.) and the University of Illinois (to N.W.).

Author information

Authors and Affiliations

Authors

Contributions

N.W., F.C., T.S.T. and F.W. designed the experiments; F.C., S.N., D.L. and Y.C.P. carried out experiments and analysed the data. N.W., F.C., T.S.T. and F.W. wrote the manuscript.

Corresponding author

Correspondence to Ning Wang.

Supplementary information

Supplementary Information

Supplementary Information (PDF 666 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chowdhury, F., Na, S., Li, D. et al. Material properties of the cell dictate stress-induced spreading and differentiation in embryonic stem cells. Nature Mater 9, 82–88 (2010). https://doi.org/10.1038/nmat2563

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2563

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing