Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A silicon-based electrical source of surface plasmon polaritons

Abstract

After decades of process scaling driven by Moore’s law, the silicon microelectronics world is now defined by length scales that are many times smaller than the dimensions of typical micro-optical components. This size mismatch poses an important challenge for those working to integrate photonics with complementary metal oxide semiconductor (CMOS) electronics technology. One promising solution is to fabricate optical systems at metal/dielectric interfaces, where electromagnetic modes called surface plasmon polaritons (SPPs) offer unique opportunities to confine and control light at length scales below 100 nm (refs 1, 2). Research groups working in the rapidly developing field of plasmonics have now demonstrated many passive components3,4 that suggest the potential of SPPs for applications in sensing5 and optical communication6. Recently, active plasmonic devices based on III–V materials7,8,9 and organic materials10 have been reported. An electrical source of SPPs was recently demonstrated using organic semiconductors by Koller and colleagues11. Here we show that a silicon-based electrical source for SPPs can be fabricated using established low-temperature microtechnology processes that are compatible with back-end CMOS technology.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the device and SEM images.
Figure 2: Electroluminescence properties of Si nanocrystals in Al2O3.
Figure 3: Simulated SPP detection efficiency.
Figure 4: Electrical generation of SPPs.

Similar content being viewed by others

References

  1. Raether, H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer Tracts in Modern Physics, Vol. 111, Springer, 1988).

    Book  Google Scholar 

  2. Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).

    Article  CAS  Google Scholar 

  3. Bozhevolnyi, S. I., Volkov, V. S., Devaux, E., Laluet, J.-Y. & Ebbesen, T. W. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440, 508–511 (2006).

    Article  CAS  Google Scholar 

  4. Ebbesen, T. W., Genet, C. & Bozhevolnyi, S. I. Surface-plasmon circuitry. Phys. Today 61, 44–50 (2008).

    Article  Google Scholar 

  5. Homola, J. (ed.) in Surface Plasmon Resonance Based Sensors (Springer Series on Chemical Sensors and Biosensors, Vol. 4, Springer, 2006).

  6. Ozbay, E. Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006).

    Article  CAS  Google Scholar 

  7. Neutens, P., van Dorpe, P., De Vlaminck, I., Lagae, L. & Borghs, G. Electrical detection of confined gap plasmons in metal–insulator–metal waveguides. Nature Photon. 3, 283–286 (2009).

    Article  CAS  Google Scholar 

  8. Hill, M. T. et al. Lasing in metallic-coated nanocavities. Nature Photon. 1, 589–594 (2007).

    Article  CAS  Google Scholar 

  9. Hill, M. T. et al. Lasing in metal–insulator–metal sub-wavelength plasmonic waveguides. Opt. Express 17, 11107–11112 (2009).

    Article  CAS  Google Scholar 

  10. Yates, C. J., Samuel, D. W., Burn, P. L., Wedge, S. & Barnes, W. L. Surface plasmon-polariton mediated emission from phosphorescent dendrimer light-emitting diodes. Appl. Phys. Lett. 88, 161105 (2006).

    Article  Google Scholar 

  11. Koller, D. M. et al. Organic plasmon-emitting diode. Nature Photon. 2, 684–687 (2008).

    Article  CAS  Google Scholar 

  12. Economou, E. N. Surface plasmons in thin films. Phys. Rev. 182, 539–554 (1969).

    Article  Google Scholar 

  13. Verhagen, E., Dionne, J. A., Kuipers, L., Atwater, H. A. & Polman, A. Near-field visualization of strongly confined surface plasmon polaritons in metal–insulator–metal waveguides. Nano Lett. 8, 2925–2929 (2008).

    Article  CAS  Google Scholar 

  14. Miyazaki, H. T. & Kurokawa, Y. Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity. Phys. Rev. Lett. 97, 097401 (2006).

    Article  Google Scholar 

  15. Jun, Y. C., Kekatpure, R. D., White, J. S. & Brongersma, M. L. Nonresonant enhancement of spontaneous emission in metal–dielectric–metal plasmon waveguide structures. Phys. Rev. B 78, 153111 (2008).

    Article  Google Scholar 

  16. Pavesi, L. & Lockwood, D. J. (eds) in Silicon Photonics (Topics in Applied Physics Series, Vol. 94, Springer, 2004).

  17. Schmitz, J. Adding functionality to microchips by wafer post-processing. Nucl. Instrum. Methods 576, 142–149 (2007).

    Article  CAS  Google Scholar 

  18. Brunets, I. et al. Low-temperature LPCVD of Si nanocrystals from disilane and trisilane (Silcore) embedded in ALD-alumina for non-volatile memory devices. Surf. Coat. Technol. 201, 9209–9214 (2007).

    Article  CAS  Google Scholar 

  19. Godefroo, S. et al. Classification and control of the origin of photoluminescence from Si nanocrystals. Nature Nanotech. 3, 174–178 (2008).

    Article  CAS  Google Scholar 

  20. Hadjisavvas, G. & Kelires, P. C. Structure and energetics of Si nanocrystals embedded in a-SiO2 . Phys. Rev. Lett. 93, 226104 (2004).

    Article  CAS  Google Scholar 

  21. Brongersma, M. L., Polman, A., Min, K. S., Tambo, T. & Atwater, H. A. Tuning the emission wavelength of Si nanocrystals in SiO2 by oxidation. Appl. Phys. Lett. 72, 2577–2579 (1998).

    Article  CAS  Google Scholar 

  22. Walters, R. J., Kalkman, J., Polman, A., Atwater, H. A. & de Dood, M. J. A. Photoluminescence quantum efficiency of dense silicon nanocrystal ensembles in SiO2 . Phys. Rev. B 73, 132302 (2006).

    Article  Google Scholar 

  23. Irrera, A. et al. Electroluminescence properties of light emitting devices based on silicon nanocrystals. Physica E 16, 395–399 (2003).

    Article  CAS  Google Scholar 

  24. Marconi, A. et al. High power efficiency in Si-nc/SiO2 multilayer light emitting devices by bipolar direct tunnelling. Appl. Phys. Lett. 94, 221110 (2009).

    Article  Google Scholar 

  25. Sze, S. M. Physics of Semiconductor Devices 2nd edn (Wiley, 1981).

    Google Scholar 

  26. Dionne, J. A., Sweatlock, L. A., Atwater, H. A. & Polman, A. Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization. Phys. Rev. B 73, 035407 (2006).

    Article  Google Scholar 

  27. Ford, G. W. & Weber, W. H. Electromagnetic interactions of molecules with metal surfaces. Phys. Rep. 113, 195–287 (1984).

    Article  CAS  Google Scholar 

  28. Hryciw, A. C., Jun, Y. C. & Brongersma, M. L. Plasmon-enhanced emission from optically-doped MOS light sources. Opt. Express 17, 185–192 (2008).

    Article  Google Scholar 

  29. Benini, L., Guiducci, C. & Paulus, C. Electronic detection of DNA hybridization: Toward fully-electronic microarrays. IEEE Des. Test Comput. 24, 38–48 (2007).

    Article  Google Scholar 

  30. Yan, G. et al. An improved TMAH Si-etching solution without attacking exposed aluminium. Sensor Actuat. A 89, 135–141 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is part of the research programme of the FOM and was financially supported by NWO. It was also supported by the NanoNed technology programme and the Smart Mix Programme of the Netherlands Ministry of Economic Affairs and the Dutch Technology Foundation STW.

Author information

Authors and Affiliations

Authors

Contributions

I.B. prepared samples through the membrane-etch process under the supervision of J.S. R.V.A.v.L. and R.J.W. completed the sample fabrication and together carried out the experiments and analysis under the supervision of A.P. The manuscript was prepared by R.J.W. with input from all co-authors.

Corresponding author

Correspondence to R. J. Walters.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 946 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walters, R., van Loon, R., Brunets, I. et al. A silicon-based electrical source of surface plasmon polaritons. Nature Mater 9, 21–25 (2010). https://doi.org/10.1038/nmat2595

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2595

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing