Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Comparative materials differences revealed in engineered bone as a function of cell-specific differentiation

Abstract

An important aim of regenerative medicine is to restore tissue function with implantable, laboratory-grown constructs that contain tissue-specific cells that replicate the function of their counterparts in the healthy native tissue. It remains unclear, however, whether cells used in bone regeneration applications produce a material that mimics the structural and compositional complexity of native bone. By applying multivariate analysis techniques to micro-Raman spectra of mineralized nodules formed in vitro, we reveal cell-source-dependent differences in interactions between multiple bone-like mineral environments. Although osteoblasts and adult stem cells exhibited bone-specific biological activities and created a material with many of the hallmarks of native bone, the ‘bone nodules’ formed from embryonic stem cells were an order of magnitude less stiff, and lacked the distinctive nanolevel architecture and complex biomolecular and mineral composition noted in the native tissue. Understanding the biological mechanisms of bone formation in vitro that contribute to cell-source-specific materials differences may facilitate the development of clinically successful engineered bone.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mineralized nodules formed from three different cell sources analysed by standard microscopy techniques.
Figure 2: Raman spectroscopy, immunostaining and gene expression evidence for type-II collagen in differentiating cultures.
Figure 3: Raman spectra of mineralized nodules and native bone, and their properties as determined by univariate peak analysis.
Figure 4: Factor analyses of mature mineralized nodules after 28 days in culture.
Figure 5: Immunostaining, gene expression and alkaline-phosphatase (ALP) evidence of osteoblastic differentiation.
Figure 6: TEM micrographs of mineralized nodules formed after 28 days in culture.

Similar content being viewed by others

References

  1. Giannoudis, P. V., Dinopoulos, H. & Tsiridis, E. Bone substitutes: An update. Injury 36 (Suppl 3), S20–S27 (2005).

    Article  Google Scholar 

  2. Friedlaender, G. E. Immune responses to osteochondral allografts. Current knowledge and future directions. Clin. Orthop. 174, 58–68 (1983).

    Google Scholar 

  3. Patel, R. & Trampuz, A. Infections transmitted through musculoskeletal-tissue allografts. N. Engl. J. Med. 350, 2544–2546 (2004).

    Article  CAS  Google Scholar 

  4. Evans, M. J. & Kaufman, M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156 (1981).

    Article  CAS  Google Scholar 

  5. Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    Article  CAS  Google Scholar 

  6. Alper, J. Geron gets green light for human trial of ES cell-derived product. Nature Biotech. 27, 213–214 (2009).

    Article  CAS  Google Scholar 

  7. Gruen, L. & Grabel, L. Concise review: Scientific and ethical roadblocks to human embryonic stem cell therapy. Stem Cells 24, 2162–2169 (2006).

    Article  Google Scholar 

  8. Litinski, V. & Kim, L. Regenerarive Medicine Industry Briefing (MaRS Venture Group, 2008).

    Google Scholar 

  9. Lewandrowski, K. U., Gresser, J. D., Wise, D. L. & Trantol, D. J. Bioresorbable bone graft substitutes of different osteoconductivities: A histologic evaluation of osteointegration of poly(propylene glycol-co-fumaric acid)-based cement implants in rats. Biomaterials 21, 757–764 (2000).

    Article  CAS  Google Scholar 

  10. Buttery, L. D. et al. Differentiation of osteoblasts and in vitro bone formation from murine embryonic stem cells. Tissue Eng. 7, 89–99 (2001).

    Article  CAS  Google Scholar 

  11. Ecarot-Charrier, B., Glorieux, F. H., van der Rest, M. & Pereira, G. Osteoblasts isolated from mouse calvaria initiate matrix mineralization in culture. J. Cell Biol. 96, 639–643 (1983).

    Article  CAS  Google Scholar 

  12. Schoeters, G. E., de Saint-Georges, L., Van den Heuvel, R. & Vanderborght, O. Mineralization of adult mouse bone marrow in vitro. Cell Tissue Kinet. 21, 363–374 (1988).

    CAS  Google Scholar 

  13. Shimko, D. A., Burks, C. A., Dee, K. C. & Nauman, E. A. Comparison of in vitro mineralization by murine embryonic and adult stem cells cultured in an osteogenic medium. Tissue Eng. 10, 1386–1398 (2004).

    Article  CAS  Google Scholar 

  14. Stevens, M. M. & George, J. H. Exploring and engineering the cell surface interface. Science 310, 1135–1138 (2005).

    Article  CAS  Google Scholar 

  15. Tzaphlidou, M. & Zaichick, V. Sex and age related Ca/P ratio in cortical bone of iliac crest of healthy humans. J. Radioanal. Nucl. Chem. 259, 347–349 (2004).

    Article  CAS  Google Scholar 

  16. Swain, R. J. & Stevens, M. M. Raman microspectroscopy for non-invasive biochemical analysis of single cells. Biochem. Soc. Trans. 35, 544–549 (2007).

    Article  CAS  Google Scholar 

  17. Krishna, C. M. et al. Micro-Raman spectroscopy for optical pathology of oral squamous cell carcinoma. Appl. Spectrosc. 58, 1128–1135 (2004).

    Article  CAS  Google Scholar 

  18. Diem, M., Romeo, M., Boydston-White, S., Miljkovic, M. & Matthaus, C. A decade of vibrational micro-spectroscopy of human cells and tissue (1994–2004). Analyst 129, 880–885 (2004).

    Article  CAS  Google Scholar 

  19. Bi, W., Deng, J. M., Zhang, Z., Behringer, R. R. & de Crombrugghe, B. Sox9 is required for cartilage formation. Nature Genet. 22, 85–89 (1999).

    Article  CAS  Google Scholar 

  20. Carden, A. & Morris, M. D. Application of vibrational spectroscopy to the study of mineralized tissues (review). J. Biomed. Opt. 5, 259–268 (2000).

    Article  CAS  Google Scholar 

  21. Tarnowski, C. P., Ignelzi, M. A. Jr & Morris, M. D. Mineralization of developing mouse calvaria as revealed by Raman microspectroscopy. J. Bone Miner. Res. 17, 1118–1126 (2002).

    Article  Google Scholar 

  22. Ducy, P., Zhang, R., Geoffroy, V., Ridall, A. L. & Karsenty, G. Osf2/Cbfa1: A transcriptional activator of osteoblast differentiation. Cell 89, 747–754 (1997).

    Article  CAS  Google Scholar 

  23. Porter, A. E., Patel, N., Skepper, J. N., Best, S. M. & Bonfield, W. Effect of sintered silicate-substituted hydroxyapatite on remodelling processes at the bone-implant interface. Biomaterials 25, 3303–3314 (2004).

    Article  CAS  Google Scholar 

  24. Ushiki, T. Collagen fibers, reticular fibers and elastic fibers. A comprehensive understanding from a morphological viewpoint. Arch. Histol. Cytol. 65, 109–126 (2002).

    Article  Google Scholar 

  25. Bonewald, L. F. et al. von Kossa staining alone is not sufficient to confirm that mineralization in vitro represents bone formation. Calcif. Tissue Int. 72, 537–547 (2003).

    Article  CAS  Google Scholar 

  26. Boyan, B. D., Schwartz, Z. & Boskey, A. L. The importance of mineral in bone and mineral research. Bone 27, 341–342 (2000).

    Article  CAS  Google Scholar 

  27. Aubin, J. E., Liu, F., Malaval, L. & Gupta, A. K. Osteoblast and chondroblast differentiation. Bone 17, 77S–83S (1995).

    Article  CAS  Google Scholar 

  28. Fang, J. & Hall, B. K. Chondrogenic cell differentiation from membrane bone periostea. Anat. Embryol. (Berl) 196, 349–362 (1997).

    Article  CAS  Google Scholar 

  29. Shapiro, F. Bone development and its relation to fracture repair. The role of mesenchymal osteoblasts and surface osteoblasts. Eur. Cell Mater. 15, 53–76 (2008).

    Article  CAS  Google Scholar 

  30. Govindarajan, V. & Overbeek, P. A. FGF9 can induce endochondral ossification in cranial mesenchyme. BMC Dev. Biol. 6, 7 (2006).

    Article  Google Scholar 

  31. Kim, S. et al. In vivo bone formation from human embryonic stem cell-derived osteogenic cells in poly(d,l-lactic-co-glycolic acid)/hydroxyapatite composite scaffolds. Biomaterials 29, 1043–1053 (2008).

    Article  CAS  Google Scholar 

  32. Hwang, N. S. et al. In vivo commitment and functional tissue regeneration using human embryonic stem cell-derived mesenchymal cells. Proc. Natl Acad. Sci. USA 105, 20641–20646 (2008).

    Article  CAS  Google Scholar 

  33. Boskey, A. & Pleshko Camacho, N. FT-IR imaging of native and tissue-engineered bone and cartilage. Biomaterials 28, 2465–2478 (2007).

    Article  CAS  Google Scholar 

  34. Boskey, A. Bone mineral crystal size. Osteoporos. Int. 14 (Suppl 5) S16–S20; discussion S20-S11 (2003).

  35. Akkus, O., Adar, F. & Schaffler, M. B. Age-related changes in physicochemical properties of mineral crystals are related to impaired mechanical function of cortical bone. Bone 34, 443–453 (2004).

    Article  CAS  Google Scholar 

  36. Yerramshetty, J. S. & Akkus, O. The associations between mineral crystallinity and the mechanical properties of human cortical bone. Bone 42, 476–482 (2008).

    Article  CAS  Google Scholar 

  37. Gadeleta, S. J. et al. A physical, chemical, and mechanical study of lumbar vertebrae from normal, ovariectomized, and nandrolone decanoate-treated cynomolgus monkeys (Macaca fascicularis). Bone 27, 541–550 (2000).

    Article  CAS  Google Scholar 

  38. Sogo, Y., Ito, A., Yokoyama, D., Yamazaki, A. & LeGeros, R. Z. Synthesis of fluoride-releasing carbonate apatites for bone substitutes. J. Mater. Sci. Mater. Med. 18, 1001–1007 (2007).

    Article  CAS  Google Scholar 

  39. Syftestad, G. T., Weitzhandler, M. & Caplan, A. I. Isolation and characterization of osteogenic cells derived from first bone of the embryonic tibia. Dev. Biol. 110, 275–283 (1985).

    Article  CAS  Google Scholar 

  40. Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45 (2001).

    Article  CAS  Google Scholar 

  41. Carter, E. A. & Edwards, H. G. M. Infrared and Raman Spectroscopy of Biological (Dekker, 2001).

    Google Scholar 

  42. Notingher, I., Jell, G., Lohbauer, U., Salih, V. & Hench, L. L. In situ non-invasive spectral discrimination between bone cell phenotypes used in tissue engineering. J. Cell. Biochem. 92, 1180–1192 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the EPSRC for funding, R. Carzaniga of the Electron Microscopy Centre, Imperial College London, for invaluable assistance with TEM and N. Walters for laboratory support. We are also grateful to R. Hill for help with the hydroxyapatite standard. R.J.S. gratefully acknowledges funding from the Rothermere Foundation, the National Science and Engineering Research Council Canada and the Canadian Centennial Scholarship Fund. N.D.E. was supported by a career development fellowship in stem cell research from the Medical Research Council, UK.

Author information

Authors and Affiliations

Authors

Contributions

E.G. carried out the cell culture work and the ALP assays and wrote the majority of the manuscript. R.J.S. carried out the Raman measurements and spectral processing and analysis and also contributed to manuscript writing and revision. N.D.E contributed some cell culture work, immunostaining results and the quantitative PCR data and helped with manuscript revision. G.J. and M.D.B carried out the SEM imaging and some TEM preparation. G.J. also contributed to manuscript revision. S.B. carried out the majority of the TEM imaging. T.A.V.S. and M.L.O. carried out the nanoindentation testing. A.P. helped with the TEM imaging and manuscript revision. M.M.S. was involved in study design, supervision of the work and manuscript revision.

Corresponding author

Correspondence to Molly M. Stevens.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gentleman, E., Swain, R., Evans, N. et al. Comparative materials differences revealed in engineered bone as a function of cell-specific differentiation. Nature Mater 8, 763–770 (2009). https://doi.org/10.1038/nmat2505

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2505

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing