Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

A spin of their own

Although it is tempting to compare organic semiconductors with their inorganic counterparts, the spin-injection and spin-transport properties are fundamentally different. The challenges in understanding and improving such properties make organic spintronics an exciting field in its own right.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison between the electronic structures of typical inorganic and organic semiconductors, as calculated by density functional theory and the local density approximation.
Figure 2: Electrical characterization of an organic two-terminal diode: Al/Alq3(300)/Ca.
Figure 3: Schematic representation of the interface between a metal and an organic layer.
Figure 4: Spin-diffusion length lS versus spin-diffusion time τs, for various materials.

References

  1. Coey, J. M. D. Magnetism and Magnetic Materials (Cambridge Univ. Press, 2009).

    Google Scholar 

  2. Awschalom, D. A. & Flatté, M. E. Nature Phys. 3, 153–159 (2007).

    Article  CAS  Google Scholar 

  3. Dediu, V. A., Hueso, L. E., Bergenti, I. & Taliani, C. Nature Mater. 8, 707–716 (2009).

    Article  CAS  Google Scholar 

  4. Xiong, Z. H., Wu, D., Vardeny, Z. V. & Shi, J. Nature 427, 821–824 (2004).

    Article  CAS  Google Scholar 

  5. Santos, T. S. et al. Phys. Rev. Lett. 98, 016601 (2007).

    Article  CAS  Google Scholar 

  6. Wagemans, W., Bloom, F. L., Bobbert, P. A., Wohlgenannt, M. & Koopmans, B. J. App. Phys. 103, 07F303 (2008).

  7. Parkin, S. S. P. in Handbook of Magnetism and Advanced Magentic Materials Vol. 5 (eds Kronmüller, H. & Parkin, S. S. P.) Ch. 1 (Wiley, 2008).

    Google Scholar 

  8. Smidt, G. J. Phys. D. 38, R107–R122 (2005).

    Article  Google Scholar 

  9. Rashba, E. I. Phys Rev B 62, R16262 (2000).

    Article  Google Scholar 

  10. Hwang, J., Wan, A. & Kahn, A. Mater. Sci. Eng. R 64, 1–31 (2009).

    Article  Google Scholar 

  11. Maruyama, T. et al. Nature Nanotech. 4, 158–161 (2009).

    Article  CAS  Google Scholar 

  12. Krause, S., Casu, M. B., Schöll, A. & Umbach, E. New J. Phys. 10, 085001 (2008).

    Article  Google Scholar 

  13. Jiang, J. S., Pearson, J. E. & Bader, S. D. Phys. Rev. B 77, 035303 (2008).

    Article  Google Scholar 

  14. Xu, W., Brauer, J., Szulczewski, G., Diver, M. S. & Caruso, A. N. App. Phys. Lett. 94, 233302 (2009).

    Article  Google Scholar 

  15. Burke, F., Abid, M., Stamenov, P. & Coey, J. M. D. J. Magn. Magn. Mater. (in the press).

  16. Matsui, H., Hasegawa, T., Tokura, Y., Hiraoka, M. & Yamada, T. Phys. Rev. Lett. 100, 122601 (2008).

    Google Scholar 

  17. Drew, A. J. et al. Nature Mater. 8, 109–114 (2009).

    Article  CAS  Google Scholar 

  18. Cinchetti, M. et al. Nature Mater. 8, 115–119 (2009).

    Article  CAS  Google Scholar 

  19. Bobbert, P. A., Wagemans, W., van Oost, F. W. A. & Koopmans, B. Phys. Rev. Lett. 102, 156604 (2009).

    Article  CAS  Google Scholar 

  20. Xie, S. J., Ahn, K. H., Smith, D. L., Bishop, A. R. & Saxena, A. Phys. Rev. B 67, 125202 (2003).

    Article  Google Scholar 

  21. Bass, J. & Pratt, W. P. Jr J. Phys. Condens. Matter 19, 183201 (2007).

    Article  Google Scholar 

  22. Kikkawa, J. & Awschalom, D. D. Nature 397, 139–141 (1999).

    Article  CAS  Google Scholar 

  23. Tsukagoshi, K., Alphenaar, B. W. & Ago, H. Nature 401, 572–574 (1999).

    Article  CAS  Google Scholar 

  24. Hueso, L. E. et al. Nature 445, 410–413 (2007).

    Article  CAS  Google Scholar 

  25. Tombros, N., Jozsa, C., Popinciuc, M., Jonkman, H. T. & van Wees, B. J. Nature 448, 571–574 (2007).

    Article  CAS  Google Scholar 

  26. Dediu, V. A., Murgia, M., Matacotta, F. C., Taliani, C. & Barbanera, S. Solid State Commun. 122, 181–184 (2002).

    Article  CAS  Google Scholar 

  27. Pramanik, S., Stefanita, C.-G., Patibandla, S. & Bandyopadhyay, S. et al. Nature Nanotech. 2, 216–218 (2007).

    Article  CAS  Google Scholar 

  28. Shim, J. H. et al. Phys. Rev. Lett. 100, 226603 (2008).

    Article  CAS  Google Scholar 

  29. Limketkai, D. M., Jadhav, P. & Baldo, M. A. Phys. Rev. B 75, 113203 (2007).

    Article  Google Scholar 

  30. Appelbaum, I., Huang, B. & Monsma, D. Nature 447, 295–298 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szulczewski, G., Sanvito, S. & Coey, M. A spin of their own. Nature Mater 8, 693–695 (2009). https://doi.org/10.1038/nmat2518

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2518

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing