Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nanolitre liquid patterning in aqueous environments for spatially defined reagent delivery to mammalian cells

Abstract

Microscale biopatterning enables regulation of cell–material interactions1,2 and cell shape3, and enables multiplexed high-throughput studies4,5,6,7,8 in a cell- and reagent-efficient manner. The majority of available techniques rely on physical contact of a stamp3, pin8, or mask9,10 with mainly a dry surface. Inkjet and piezoelectric printing11 is carried out in a non-contact manner but still requires a substantially dry substrate to ensure fidelity of printed patterns. These existing methods, therefore, are limited for patterning onto delicate surfaces of living cells because physical contact or substantially dry conditions are damaging to them. Microfluidic patterning with laminar streams12,13 does enable non-contact patterning in fully aqueous environments but with limited throughput and reagent diffusion across interfacial flows. Here, we describe a polymeric aqueous two-phase system that enables patterning nanolitres of a reagent-containing aqueous phase, in arbitrary shapes, within a second aqueous phase covering a cell monolayer. With the appropriate medium formulation, reagents of interest remain confined to the patterned phase without significant diffusion. The fully aqueous environment ensures high reagent activity and cell viability. The utility of this strategy is demonstrated with patterned delivery of genetic materials to mammalian cells for phenotypic screening of gene expression and gene silencing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Polymeric aqueous two-phase systems generate user-defined patterns of a reagent on a cell monolayer.
Figure 2: Addressable delivery of nucleic acids to cells using two-phase patterned microarrays.
Figure 3: Patterned microarrays of lentiviral-mediated gene expression and gene knockdown.
Figure 4: Patterned microarrays facilitate phenotypic screening of function of different genes in cell cultures on soft substrates.

Similar content being viewed by others

References

  1. Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M. & Ingber, D. E. Geometric control of cell life and death. Science 276, 1425–1428 (1997).

    Article  CAS  Google Scholar 

  2. Khetani, S. R. & Bhatia, S. N. Microscale culture of human liver cells for drug development. Nature Biotech. 26, 120–126 (2008).

    Article  CAS  Google Scholar 

  3. Singhvi, R. et al. Engineering cell shape and function. Science 264, 696–698 (1994).

    Article  CAS  Google Scholar 

  4. Anderson, D. G., Levenberg, S. & Langer, R. Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells. Nature Biotech. 22, 863–866 (2004).

    Article  CAS  Google Scholar 

  5. Anderson, D. G., Putnam, D., Lavik, E. B., Mahmood, T. A. & Langer, R. Biomaterial microarrays: Rapid, microscale screening of polymer-cell interaction. Biomaterials 26, 4892–4897 (2005).

    Article  CAS  Google Scholar 

  6. Bailey, S. N., Sabatini, D. M. & Stockwell, B. R. Microarrays of small molecules embedded in biodegradable polymers for use in mammalian cell-based screens. Proc. Natl Acad. Sci. USA 101, 16144–16149 (2004).

    Article  CAS  Google Scholar 

  7. Flaim, C. J., Chien, S. & Bhatia, S. N. An extracellular matrix microarray for probing cellular differentiation. Nature Methods 2, 119–125 (2005).

    Article  CAS  Google Scholar 

  8. Ziauddin, J. & Sabatini, D. M. Microarrays of cells expressing defined cDNAs. Nature 411, 107–110 (2001).

    Article  CAS  Google Scholar 

  9. Delamarche, E., Bernard, A., Schmid, H., Michel, B. & Biebuyck, H. Patterned delivery of immunoglobulins to surfaces using microfluidic networks. Science 276, 779–781 (1997).

    Article  CAS  Google Scholar 

  10. Folch, A., Jo, B. H., Hurtado, O., Beebe, D. J. & Toner, M. Microfabricated elastomeric stencils for micropatterning cell cultures. J. Biomed. Mater. Res. 52, 346–353 (2000).

    Article  CAS  Google Scholar 

  11. Roth, E. A. et al. Inkjet printing for high-throughput cell patterning. Biomaterials 25, 3707–3715 (2004).

    Article  CAS  Google Scholar 

  12. Juncker, D., Schmid, H. & Delamarche, E. Multipurpose microfluidic probe. Nature Mater. 4, 622–628 (2005).

    Article  CAS  Google Scholar 

  13. Takayama, S. et al. Subcellular positioning of small molecules. Nature 411, 1016 (2001).

    Article  CAS  Google Scholar 

  14. Albertsson, P.-A. Partition of Cell Particles and Macromolecules 3rd edn (Wiley, 1986).

    Google Scholar 

  15. Eick, J. D., Good, R. J. & Neumann, A. W. Thermodynamics of contact angles. II. Rough solid surfaces. J. Colloid Interface Sci. 53, 235–238 (1975).

    Article  Google Scholar 

  16. Stuart, J. M., Segal, E., Koller, D. & Kim, S. K. A gene-coexpression network for global discovery of conserved genetic modules. Science 302, 249–255 (2003).

    Article  CAS  Google Scholar 

  17. Bailey, S. N., Ali, S. M., Carpenter, A. E., Higgins, C. O. & Sabatini, D. M. Microarrays of lentiviruses for gene function screens in immortalized and primary cells. Nature Methods 3, 117–122 (2006).

    Article  CAS  Google Scholar 

  18. Hannon, G. J. RNA interference. Nature 418, 244–251 (2002).

    Article  CAS  Google Scholar 

  19. Nelson, C. M. & Bissell, M. J. Of extracellular matrix, scaffolds, and signalling: Tissue architecture regulates development, homeostasis, and cancer. Ann. Rev. Cell Dev. Biol. 22, 287–309 (2006).

    Article  CAS  Google Scholar 

  20. Streuli, C. H., Schmidhauser, C., Kobrin, M., Bissell, M. J. & Derynck, R. Extracellular matrix regulates expression of the TGF-beta 1 gene. J. Cell Biol. 120, 253–260 (1993).

    Article  CAS  Google Scholar 

  21. Chen, S. S., Fitzgerald, W., Zimmerberg, J., Kleinmanc, H. K. & Margolis, L. Cell–cell and cell-extracellular matrix interactions regulate embryonic stem cell differentiation. Stem Cells 25, 553–561 (2008).

    Article  CAS  Google Scholar 

  22. Liu, X. et al. A targeted mutation at the known collagenase cleavage site in mouse type I collagen impairs tissue remodeling. J. Cell Biol. 130, 227–237 (1995).

    Article  CAS  Google Scholar 

  23. Chun, T. et al. A pericellular collagenase directs the 3-dimensional development of white adipose tissue. Cell 125, 577–591 (2006).

    Article  CAS  Google Scholar 

  24. Sabeh, F. et al. Tumor cell traffic through the extracellular matrix is controlled by the membrane-anchored collagenase MT1-MMP. J. Cell Biol. 167, 769–781 (2004).

    Article  CAS  Google Scholar 

  25. Hotary, K., Allen, E., Punturieri, A., Yana, I. & Weiss, S. J. Regulation of cell invasion and morphogenesis in a three-dimensional type I collagen matrix by membrane-type matrix metalloproteinases 1, 2, and 3. J. Cell Biol. 149, 1309–1323 (2000).

    Article  CAS  Google Scholar 

  26. Li, X.-Y., Ota, I., Yana, I., Sabeh, F. & Weiss, S. J. Molecular dissection of the structural machinery underlying the tissue-invasive activity of membrane type-1 matrix metalloproteinase. Mol. Biol. Cell 19, 3221–3233 (2008).

    Article  CAS  Google Scholar 

  27. Song, J. W. et al. Microfluidic endothelium for studying the intravascular adhesion of metastatic breast cancer cells. PLoS One 4, e5756 (2009).

    Article  Google Scholar 

  28. Wang, L., Jackson, W. C., Steinbach, P. A. & Tsien, R. Y. Evolution of new nonantibody proteins via iterative somatic hypermutation. Proc. Natl Acad. Sci. USA 101, 16745–16749 (2004).

    Article  CAS  Google Scholar 

  29. Ventura, A. et al. Cre-lox-regulated conditional RNA interference from transgenes. Proc. Natl Acad. Sci. USA 101, 10380–10385 (2004).

    Article  CAS  Google Scholar 

  30. Smith, M. C. et al. CXCR4 regulates growth of both primary and metastatic breast cancer. Cancer Res. 64, 8604–8612 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support for this research was provided by a gift from J. Passino and NIH grants P50CA093990 and R01CA136553. H.T. acknowledges a postdoctoral fellowship (NSERC PDF-329449-2006). We thank M. El-Sayed and Y.-L. Lin for spectrophotometry measurements.

Author information

Authors and Affiliations

Authors

Contributions

H.T. designed and carried out experiments, analysed the data and wrote the manuscript. A.J. helped optimize transfection experiments. B.M. helped with patterning experiments and imaging microarrays. Q.Y.L. carried out image processing of transfected cell microarrays. X.L. prepared collagen and helped with the collagen degradation assay. K.E.L. prepared lentiviruses. G.D.L. helped design viral transduction experiments and optimize them. S.J.W. helped design the collagen degradation assay. S.T. designed the project and edited the manuscript. All authors commented on the manuscript.

Corresponding author

Correspondence to S. Takayama.

Supplementary information

Supplementary Information

Supplementary Information (PDF 977 kb)

Supplementary Information

Supplementary Movie 1 (MOV 1612 kb)

Supplementary Information

Supplementary Movie 2 (MOV 1280 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tavana, H., Jovic, A., Mosadegh, B. et al. Nanolitre liquid patterning in aqueous environments for spatially defined reagent delivery to mammalian cells. Nature Mater 8, 736–741 (2009). https://doi.org/10.1038/nmat2515

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2515

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing