Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A general phase-transfer protocol for metal ions and its application in nanocrystal synthesis

A Corrigendum to this article was published on 13 January 2010

This article has been updated

Abstract

Nanocrystals prepared in organic media can be easily self-assembled into close-packed hexagonal monolayers on solvent evaporation for various applications. However, they usually rely on the use of organometallic precursors that are soluble in organic solvents. Herein we report a general protocol to transfer metal ions from an aqueous solution to an organic medium, which involves mixing the aqueous solution of metal ions with an ethanolic solution of dodecylamine (DDA), and extracting the coordinating compounds formed between the metal ions and DDA into toluene. This approach could be applied towards transferring a wide variety of transition-metal ions with an efficiency of >95%, and enables the synthesis of a variety of metallic and semiconductor nanocrystals to be carried out in an organic medium using relatively inexpensive water-soluble metal salts as starting materials. This protocol could be easily extended to synthesize a variety of heterogeneous semiconductor/noble-metal hybrids and to nanocomposites with multiple functionalities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3: TEM images of metal nanoparticles.
Figure 4: XRD patterns.
Figure 5: Room-temperature trapping and release of SYBR Green-I by Pt hollow nanospheres.
Figure 6: PbS–Au hybrids at different Au/PbS precursor ratios.

Similar content being viewed by others

Change history

  • 13 January 2010

    The originally listed authors of the above Article wish to add a further two names as co-authors. The full author list, affiliations and acknowledgements have now been corrected in the HTML and PDF versions of the Article.

References

  1. Ferrando, R., Jellinek, J. & Johnston, R. L. Nanoalloys: From theory to applications of alloy clusters and nanoparticles. Chem. Rev. 108, 845–910 (2008).

    Article  CAS  Google Scholar 

  2. Murray, R. W. Nanoelectrochemistry: Metal nanoparticles, nanoelectrodes, and nanopores. Chem. Rev. 108, 2688–2720 (2008).

    Article  CAS  Google Scholar 

  3. Xia, Y., Xiong, Y., Lim, B. & Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics. Angew. Chem. Int. Ed. 48, 60–103 (2009).

    Article  CAS  Google Scholar 

  4. Zhang, J., Sasaki, K., Sutter, E. & Adzic, R. R. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 315, 220–222 (2007).

    Article  CAS  Google Scholar 

  5. Watanabe, K., Menzel, D., Nilius, N. & Freund, H.-J. Photochemistry on metal nanoparticles. Chem. Rev. 106, 4301–4320 (2006).

    Article  CAS  Google Scholar 

  6. Bruda, C., Chen, X., Narayanan, R. & El-Sayed, M. A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 1025–1102 (2005).

    Article  Google Scholar 

  7. Daniel, M.-C. & Astruc, D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293–346 (2004).

    Article  CAS  Google Scholar 

  8. Brus, L. Noble metal nanoparticles: Plasmon electron transfer photochemistry and single-molecule Raman spectroscopy. Acc. Chem. Res. 41, 1742–1749 (2008).

    CAS  Google Scholar 

  9. Murray, C. B., Kagan, C. R. & Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 30, 545–610 (2000).

    Article  CAS  Google Scholar 

  10. Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996).

    Article  CAS  Google Scholar 

  11. Kuemmeth, F., Bolotin, K. I., Shi, S. & Ralph, D. C. Measurement of discrete energy-level spectra in individual chemically synthesized gold nanoparticles. Nano Lett. 8, 4506–4512 (2008).

    Article  CAS  Google Scholar 

  12. Maheshwari, V., Kane, J. & Saraf, R. F. Self-assembly of a micrometres-long one-dimensional network of cemented Au nanoparticles. Adv. Mater. 20, 284–287 (2008).

    Article  CAS  Google Scholar 

  13. Markovich, G., Collier, C. P. & Heath, J. R. Reversible metal–insulator transition in ordered metal nanocrystal monolayers observed by impedance spectroscopy. Phys. Rev. Lett. 80, 3807–3810 (1998).

    Article  CAS  Google Scholar 

  14. Collier, C. P., Saykally, R. J., Shiang, J. J., Henrichs, S. E. & Heath, J. R. Reversible tuning of silver quantum dot monolayers through the metal–insulator transition. Science 277, 1978–1981 (1997).

    Article  CAS  Google Scholar 

  15. Laurent, S. et al. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 108, 2064–2110 (2008).

    Article  CAS  Google Scholar 

  16. Jeong, U., Teng, X., Wang, Y., Yang, H. & Xia, Y. Superparamagnetic colloids: Controlled synthesis and niche applications. Adv. Mater. 19, 33–60 (2007).

    Article  CAS  Google Scholar 

  17. Sun, S. Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles. Adv. Mater. 18, 393–403 (2006).

    Article  CAS  Google Scholar 

  18. Caswell, K. K., Bender, C. M. & Murphy, C. J. Seedless, surfactantless wet chemical synthesis of silver nanowires. Nano Lett. 3, 667–669 (2003).

    Article  CAS  Google Scholar 

  19. Kim, F., Song, J. H. & Yang, P. Photochemical synthesis of gold nanorods. J. Am. Chem. Soc. 124, 14316–14317 (2002).

    Article  CAS  Google Scholar 

  20. Sun, Y. & Xia, Y. Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176–2179 (2002).

    Article  CAS  Google Scholar 

  21. Shankar, S. S. et al. Biological synthesis of triangular gold nanoprisms. Nature Mater. 3, 482–488 (2004).

    Article  CAS  Google Scholar 

  22. Jin, R. et al. Photoinduced conversion of silver nanospheres to nanoprisms. Science 294, 1901–1903 (2001).

    Article  CAS  Google Scholar 

  23. Dahl, J. A., Maddux, B. L. S. & Hutchison, J. E. Toward greener nanosynthesis. Chem. Rev. 107, 2228–2269 (2007).

    Article  CAS  Google Scholar 

  24. Wang, X., Zhuang, J., Peng, Q. & Li, Y. A general strategy for nanocrystal synthesis. Nature 437, 121–124 (2005).

    Article  CAS  Google Scholar 

  25. Cushing, B., Kolesnichenko, V. L. & O’Connor, C. J. Recent advances in the liquid-phase synthesis of inorganic nanoparticles. Chem. Rev. 104, 3893–3946 (2004).

    Article  CAS  Google Scholar 

  26. Brust, M., Walker, M., Bethell, D., Schiffrin, D. J. & Whyman, R. Synthesis of thiol-derivatized gold nanoparticles in a two-phase liquid–liquid system. J. Chem. Soc. Chem. Commun. 7, 801–802 (1994).

    Article  Google Scholar 

  27. Roundhill, D. M. (ed.) Extraction of Metals from Soils and Waters (Kluwer–Academic/Plenum, 2001).

  28. McClune, W. F. (ed.) Powder Diffraction File Alphabetical Index Inorganic Phase (JCPDS, 1980).

  29. Link, S., Wang, Z. L. & El-Sayed, M. A. Alloy formation of gold-silver nanoparticles and the dependence of plasmon absorption on their composition. J. Phys. Chem. B 103, 3529–3533 (1999).

    Article  CAS  Google Scholar 

  30. Wagner, C. D. et al. NIST Standard Reference Database 20, version 3.2 (web version).

  31. Sun, Y., Mayers, B. & Xia, Y. Template-engaged replacement reaction: A one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors. Nano Lett. 2, 481–485 (2002).

    Article  CAS  Google Scholar 

  32. Sun, Y. & Xia, Y. Multiple-walled nanotubes made of metals. Adv. Mater. 16, 264–268 (2004).

    Article  CAS  Google Scholar 

  33. Sun, Y. & Xia, Y. Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium. J. Am. Chem. Soc. 126, 3892–3901 (2004).

    Article  CAS  Google Scholar 

  34. Yang, J., Lee, J. Y., Too, H. P. & Valiyaveettil, S. A bis(p-sulfonatophenyl)phenylphosphine-based synthesis of hollow Pt nanospheres. J. Phys. Chem. B 110, 125–129 (2006).

    Article  CAS  Google Scholar 

  35. Tan, Y.-N., Yang, J., Lee, J. Y. & Wang, D. I. C. Mechanistic study on the bis(p-sulfonatophenyl)phenylphosphine synthesis of monometallic Pt hollow nanoboxes using Ag*–Pt core–shell nanocubes as sacrificial templates. J. Phys. Chem. C 111, 14084–14090 (2007).

    Article  CAS  Google Scholar 

  36. Zhang, Q., Lee, J. Y., Yang, J., Boothroyd, C. & Zhang, J. Size and composition tunable Ag–Au alloy nanoparticles by replacement reactions. Nanotechnology 18, 245605 (2007).

    Article  Google Scholar 

  37. Aldana, J., Wang, A. & Peng, X. Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. J. Am. Chem. Soc. 123, 8844–8850 (2001).

    Article  CAS  Google Scholar 

  38. Mokari, T., Rothenberg, E., Popov, I., Costi, R. & Banin, U. Selective growth of metal tips onto semiconductor quantum rods and tetrapods. Science 304, 1787–1790 (2004).

    Article  CAS  Google Scholar 

  39. Pacholski, C., Kornowski, A. & Weller, H. Nanomaterials: Site-specific photodeposition of silver on ZnO nanorods. Angew. Chem. Int. Ed. 43, 4774–4777 (2004).

    Article  CAS  Google Scholar 

  40. Milliron, D. J. et al. Colloidal nanocrystal heterostructures with linear and branched topology. Nature 430, 190–195 (2004).

    Article  CAS  Google Scholar 

  41. Gu, H., Zheng, R., Zhang, X. & Xu, B. Facile one-pot synthesis of bifunctional heterodimers of nanoparticles: A conjugate of quantum dot and magnetic nanoparticles. J. Am. Chem. Soc. 126, 5664–5665 (2004).

    Article  CAS  Google Scholar 

  42. Yu, H. et al. Dumbbell-like bifunctional Au–Fe3O4 nanoparticles. Nano Lett. 5, 379–382 (2005).

    Article  CAS  Google Scholar 

  43. Li, Y., Zhang, Q., Nurmikko, A. V. & Sun, S. Enhanced magnetooptical response in dumbbell-like Ag–CoFe2O4 nanoparticle pairs. Nano Lett. 5, 1689–1692 (2005).

    Article  CAS  Google Scholar 

  44. Yi, D. K. et al. Silica-coated nanocomposites of magnetic nanoparticles and quantum dots. J. Am. Chem. Soc. 127, 4990–4991 (2005).

    Article  CAS  Google Scholar 

  45. Shi, W. et al. A general approach to binary and ternary hybrid nanocrystals. Nano Lett. 6, 875–881 (2006).

    Article  CAS  Google Scholar 

  46. Selvan, S. T., Patra, P. K., Ang, C. Y. & Ying, J. Y. Synthesis of silica-coated semiconductor and magnetic quantum dots and their use in the imaging of live cells. Angew. Chem. Int. Ed. 46, 2448–2452 (2007).

    Article  CAS  Google Scholar 

  47. Jiang, J. et al. Bifunctional Fe3O4–Ag heterodimer nanoparticles for two-photon fluorescence imaging and magnetic manipulation. Adv. Mater. 20, 4403–4407 (2008).

    Article  CAS  Google Scholar 

  48. Mokari, T., Sztrum, C. G., Salant, A., Rabani, E. & Banin, U. Formation of asymmetric one-sided metal-tipped semiconductor nanocrystal dots and rods. Nature Mater. 4, 855–863 (2005).

    Article  CAS  Google Scholar 

  49. Son, D. H., Hughes, S. M., Yin, Y. & Alivisatos, A. P. Cation exchange reactions in ionic nanocrystals. Science 306, 1009–1012 (2004).

    Article  CAS  Google Scholar 

  50. Park, J. et al. Ultra-large-scale syntheses of monodisperse nanocrystals. Nature Mater. 3, 891–895 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. K. Kuan of the Institute of Bioengineering and Nanotechnology, Singapore, for his assistance in characterizing the Pt hollow nanospheres. J.Y. and J.Y.Y. acknowledge the support by the Institute of Bioengineering and Nanotechnology (Biomedical Research Council, Agency for Science, Technology and Research, Singapore). J.Y., E.H.S. and S.O.K. acknowledge the University of Toronto, the US Air Force (MURI grant to S.O.K.) and the NIH (CA1222878-01A2). E.H.S. also acknowledges the Canada Research Chairs, the Canada Foundation for Innovation, and the Natural Sciences and Engineering Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shana Kelley or Jackie Y. Ying.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Sargent, E., Kelley, S. et al. A general phase-transfer protocol for metal ions and its application in nanocrystal synthesis. Nature Mater 8, 683–689 (2009). https://doi.org/10.1038/nmat2490

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2490

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing