Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Composite domain walls in a multiferroic perovskite ferrite

Abstract

Controlling ferromagnetism by an external electric field has been a great challenge in materials physics, for example towards the development of low-power-consumption spintronics devices. To achieve an efficient mutual control of electricity and magnetism, the use of multiferroics—materials that show both ferroelectric and ferromagnetic/antiferromagnetic order—is one of the most promising approaches1,2,3,4. Here, we show that GdFeO3, one of the most orthodox perovskite oxides5, is not only a weak ferromagnet but also possesses a ferroelectric ground state, in which the ferroelectric polarization is generated by the striction through the exchange interaction between the Gd and Fe spins. Furthermore, in this compound, ferroelectric polarization and magnetization are successfully controlled by magnetic and electric fields, respectively. This unprecedented mutual controllability of electricity and magnetism is attributed to the unique feature of composite domain wall clamping of the respective domain walls for electric and magnetic orders. This domain wall feature generally determines the efficiency of the mutual controllability and thus could have an important role towards the application of multiferroics to practical devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Temperature-dependent properties of a GdFeO3 single crystal.
Figure 2: Magnetic-field-dependent properties of a GdFeO3 single crystal.
Figure 3: Schematic diagrams of the magnetic structure of GdFeO3.
Figure 4: Composite domain walls and their magnetoelectric coupling in GdFeO3.

Similar content being viewed by others

References

  1. Fiebig, M. Revival of the magnetoelectric effect. J. Phys. D 38, R123–R152 (2005).

    Article  CAS  Google Scholar 

  2. Cheong, S.-W. & Mostvoy, M. Multiferroics: A magnetic twist for ferroelectricity. Nature Mater. 6, 13–20 (2007).

    Article  CAS  Google Scholar 

  3. Ramesh, R. & Spaldin, N. A. Multiferroics: Progress and prospects in thin films. Nature Mater. 6, 21–29 (2007).

    Article  CAS  Google Scholar 

  4. Tokura, Y. Multiferroics-toward strong coupling between magnetization and polarization in a solid. J. Magn. Magn. Mater. 310, 1145–1150 (2007).

    Article  CAS  Google Scholar 

  5. Geller, S. Crystal structure of gadolinium orthoferrite, GdFeO3 . J. Chem. Phys. 24, 1236–1239 (1956).

    Article  CAS  Google Scholar 

  6. Katine, J. A., Albert, F. J., Buhrman, R. A., Myers, E. B. & Ralph, D. C. Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars. Phys. Rev. Lett. 84, 3149–3152 (2000).

    Article  CAS  Google Scholar 

  7. Chappert, C., Fert, A. & Dau, F. N. V. The emergence of spin electronics in data storage. Nature Mater. 6, 813–823 (2007).

    Article  CAS  Google Scholar 

  8. Fennie, C. J. Ferroelectrically induced weak ferromagnetism by design. Phys. Rev. Lett. 100, 167203 (2008).

    Article  Google Scholar 

  9. Yamasaki, Y. et al. Electric control of spin helicity in a magnetic ferroelectric. Phys. Rev. Lett. 98, 147204 (2007).

    Article  CAS  Google Scholar 

  10. Ishiwata, S., Taguchi, Y., Murakawa, H., Onose, Y. & Tokura, Y. Low magnetic-field control of electric polarization vector in a helimagnet. Science 319, 1643–1646 (2008).

    Article  CAS  Google Scholar 

  11. Taniguchi, K., Abe, N., Ohtani, S., Umetsu, H. & Arima, T. Ferroelectric polarization reversal by a magnetic field in multiferroic Y-type hexaferrite Ba2Mg2Fe12O22 . Appl. Phys. Exp. 1, 031301 (2008).

    Article  Google Scholar 

  12. Yamaguchi, T. & Tsushima, K. Magnetic symmetry of rare-earth orthochromites and orthoferrites. Phys. Rev. B 8, 5187–5198 (1973).

    Article  CAS  Google Scholar 

  13. Zvezdin, A. K. & Mukhin, A. A. Magnetoelectric interactions and phase transitions in a new class of multiferroics with improper electric polarization. JETP Lett. 88, 505–510 (2008).

    Article  CAS  Google Scholar 

  14. Treves, D. Studies on orthoferrites at the Weizmann Institute of science. J. Appl. Phys. 36, 1033–1039 (1965).

    Article  CAS  Google Scholar 

  15. Dzyaloshinskii, I. A thermodynamic theory of weak ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241–255 (1958).

    Article  Google Scholar 

  16. Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960).

    Article  CAS  Google Scholar 

  17. Bertaut, E. F. in Magnetism Vol. 3 (eds Rado, G. T. & Suhl, H.) 149–209 (Academic, 1963).

    Google Scholar 

  18. Vitebskii, I. M., Kovtun, N. M., Troitskii, G. A. & Khmara, V. M. Characteristics of 57Fe NMR in the ordering of gadolinium subsystem in GdFeO3 . Izv. Akad. Nauk USSR, Ser. Fiz. 52, 1739–1740 (1988).

    CAS  Google Scholar 

  19. Cooke, A. H., England, N. J., Preston, N. F., Swithenby, S. J. & Wells, M. R. Magnetic ordering in gadolinium aluminate, GdAlO3 . Solid State Commun. 18, 545–547 (1976).

    Article  CAS  Google Scholar 

  20. Cook, D. C. & Cashion, J. D. Mossbauer measurements in canted antiferromagnetic GdAlO3 . J. Phys. C 13, 4199–4210 (1980).

    Article  CAS  Google Scholar 

  21. Borovik-Romanov, A. S. & Grimmer, H. in International Tables for Crystallography Vol. D (ed. Authier, A.) 105–149 (Kluwer–Academic, 2003).

    Google Scholar 

  22. Cashion, J. D., Cooke, A. H., Martin, D. M. & Wells, M. R. Magnetic interactions in gadolinium orthoferrite. J. Phys. C 3, 1612–1620 (1970).

    Article  CAS  Google Scholar 

  23. Tokunaga, Y., Iguchi, S., Arima, T. & Tokura, Y. Magnetic-field-induced ferroelectric state in DyFeO3 . Phys. Rev. Lett. 101, 097205 (2008).

    Article  CAS  Google Scholar 

  24. Kimura, T., Goto, T., Shintani, H., Ishizaka, K., Arima, T & Tokura, Y. Magnetic control of ferroelectric polarization. Nature 426, 55–58 (2003).

    Article  CAS  Google Scholar 

  25. Durbin, G. W., Johnson, C. E. & Thomas, M. F. Temperature dependence of field-induced spin reorientation in GdFeO3 . J. Phys. C 10, 1975–1978 (1977).

    Article  CAS  Google Scholar 

  26. Fiebig, M., Lottermoser, T., Frohlich, D., Goitsev, A. V. & Pisarev, R. V. Observation of coupled magnetic and electric domains. Nature 419, 818–820 (2002).

    Article  CAS  Google Scholar 

  27. Choi, Y. J. et al. Ferroelectricity in an Ising chain magnet. Phys. Rev. Lett. 100, 047601 (2008).

    Article  CAS  Google Scholar 

  28. Katsura, H., Nagaosa, N. & Balatsky, V. Spin current and magnetoelectric effect in noncollinear magnets. Phys. Rev. Lett. 95, 057205 (2005).

    Article  Google Scholar 

  29. Mostovoy, M. Ferroelectricity in spiral magnets. Phys. Rev. Lett. 96, 067601 (2006).

    Article  Google Scholar 

  30. Sergienko, I. A. & Dagotto, E. Role of the Dzyaloshinskii–Moriya interaction in multiferroic perovskites. Phys. Rev. B 73, 094434 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank S. Ishiwata and H. Katsura for fruitful discussions. This work was in part supported by Grants-in-Aid for Scientific Research from the MEXT, Japan.

Author information

Authors and Affiliations

Authors

Contributions

The experiment was carried out by Y. Tokunaga and H.S. The results were discussed and interpreted by Y. Tokunaga, N.F., H.S., Y. Taguchi, T.A. and Y. Tokura. N.F. carried out the theoretical calculations.

Corresponding author

Correspondence to Yusuke Tokunaga.

Supplementary information

Supplementary Information

Supplementary Information (PDF 470 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tokunaga, Y., Furukawa, N., Sakai, H. et al. Composite domain walls in a multiferroic perovskite ferrite. Nature Mater 8, 558–562 (2009). https://doi.org/10.1038/nmat2469

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2469

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing