Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Complexity in biomaterials for tissue engineering

Abstract

The molecular and physical information coded within the extracellular milieu is informing the development of a new generation of biomaterials for tissue engineering. Several powerful extracellular influences have already found their way into cell-instructive scaffolds, while others remain largely unexplored. Yet for commercial success tissue engineering products must be not only efficacious but also cost-effective, introducing a potential dichotomy between the need for sophistication and ease of production. This is spurring interest in recreating extracellular influences in simplified forms, from the reduction of biopolymers into short functional domains, to the use of basic chemistries to manipulate cell fate. In the future these exciting developments are likely to help reconcile the clinical and commercial pressures on tissue engineering.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tissue engineering timeline.
Figure 2: Presentation and release of growth factors from TE scaffolds.
Figure 3: Vascularization of tissue-engineering scaffolds.
Figure 4: Synthetic mimics of biological structures.

Similar content being viewed by others

References

  1. Viola, J., Lal, B. & Grad, O. The Emergence of Tissue Engineering as a Research Field (2003); available at <http://www.nsf.gov/pubs/2004/nsf0450/start.htm>.

    Google Scholar 

  2. Atala, A., Bauer, S. B., Soker, S., Yoo, J. J. & Retik, A. B. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 367, 1241–1246 (2006).

    Google Scholar 

  3. Macchiarini, P. et al. Clinical transplantation of a tissue-engineered airway. Lancet 372, 2023–2030 (2008).

    Google Scholar 

  4. Lysaght, M. J., Jaklenec, A. & Deweerd, E. Great expectations: Private sector activity in tissue engineering, regenerative medicine, and stem cell therapeutics. Tissue Eng. Part A 14, 305–315 (2008).

    Google Scholar 

  5. US Department of Health and Human Services. 2020: A New Vision — A Future for Regenerative Medicine (2006); available at <http://www.hhs.gov/reference/newfuture.shtml>.

  6. Bouchie, A. Tissue engineering firms go under. Nature Biotechnol. 20, 1178–1179 (2002).

    CAS  Google Scholar 

  7. Michalopoulos, G. K. & DeFrances, M. C. Liver regeneration. Science 276, 60–66 (1997).

    CAS  Google Scholar 

  8. Ford, C. E., Hamerton, J. L., Barnes, D. W. & Loutit, J. F. Cytological identification of radiation-chimaeras. Nature 177, 452–454 (1956).

    CAS  Google Scholar 

  9. Mathe, G., Amiel, J. L., Schwarzenberg, L., Cattan, A. & Schneider, M. Haematopoietic chimera in man after allogenic (homologous) bone-marrow transplantation. (Control of the secondary syndrome. Specific tolerance due to the chimerism). Br. Med. J. 5373, 1633–1635 (1963).

    Google Scholar 

  10. Pittenger, M. F. et al. Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147 (1999).

    Article  CAS  Google Scholar 

  11. Richards, L. J., Kilpatrick, T. J. & Bartlett, P. F. De novo generation of neuronal cells from the adult mouse brain. Proc. Natl Acad. Sci. USA 89, 8591–8595 (1992).

    CAS  Google Scholar 

  12. da Silva, M. L., Chagastelles, P. C. & Nardi, N. B. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J. Cell Sci. 119, 2204–2213 (2006).

    Google Scholar 

  13. Crisan, M. et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3, 301–313 (2008).

    CAS  Google Scholar 

  14. Stevens, M. M. et al. In vivo engineering of organs: the bone bioreactor. Proc. Natl Acad. Sci. USA 102, 11450–11455 (2005).

    CAS  Google Scholar 

  15. Litinski, V. & Kim, L. Regenerative Medicine Industry Briefing (MaRS Venture Group, 2008).

    Google Scholar 

  16. Breitbach, M. et al. Potential risks of bone marrow cell transplantation into infarcted hearts. Blood 110, 1362–1369 (2007).

    CAS  Google Scholar 

  17. Engler, A. J. et al. Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J. Cell Biol. 166, 877–887 (2004).

    CAS  Google Scholar 

  18. Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    CAS  Google Scholar 

  19. Taylor, C. J. et al. Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet 366, 2019–2025 (2005).

    Google Scholar 

  20. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  Google Scholar 

  21. Kim, J. B. et al. Oct4-induced pluripotency in adult neural stem cells. Cell 136, 411–419 (2009).

    CAS  Google Scholar 

  22. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    Article  CAS  Google Scholar 

  23. Wernig, M. et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448, 318–324 (2007).

    Article  CAS  Google Scholar 

  24. Kaji, K. et al. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458, 771–775 (2009).

    CAS  Google Scholar 

  25. Nichols, S. A., Dirks, W., Pearse, J. S. & King, N. Early evolution of animal cell signaling and adhesion genes. Proc. Natl Acad. Sci. USA 103, 12451–12456 (2006).

    CAS  Google Scholar 

  26. Nose, A., Tsuji, K. & Takeichi, M. Localization of specificity determining sites in cadherin cell adhesion molecules. Cell 61, 147–155 (1990).

    CAS  Google Scholar 

  27. Takeichi, M., Inuzuka, H., Shimamura, K., Matsunaga, M. & Nose, A. Cadherin-mediated cell–cell adhesion and neurogenesis. Neurosci. Res. Suppl. 13, S92–S96 (1990).

    CAS  Google Scholar 

  28. de Bank, P. A., Kellam, B., Kendall, D. A. & Shakesheff, K. M. Surface engineering of living myoblasts via selective periodate oxidation. Biotechnol. Bioeng. 81, 800–808 (2003).

    CAS  Google Scholar 

  29. Urist, M. R. Bone: formation by autoinduction. Science 150, 893–899 (1965).

    CAS  Google Scholar 

  30. Damien, C. J. & Parsons, J. R. Bone graft and bone graft substitutes: a review of current technology and applications. J. Appl. Biomater. 2, 187–208 (1991).

    CAS  Google Scholar 

  31. Ott, H. C. et al. Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart. Nature Med. 14, 213–221 (2008).

    CAS  Google Scholar 

  32. Hollister, S. J. Porous scaffold design for tissue engineering. Nature Mater. 4, 518–524 (2005).

    CAS  Google Scholar 

  33. L'Heureux, N. et al. Technology insight: the evolution of tissue-engineered vascular grafts: from research to clinical practice. Nature Clin. Pract. Cardiovasc. Med. 4, 389–395 (2007).

    Google Scholar 

  34. Butler, D. L. et al. Functional tissue engineering for tendon repair: A multidisciplinary strategy using mesenchymal stem cells, bioscaffolds, and mechanical stimulation. J. Orthop. Res. 26, 1–9 (2008).

    Google Scholar 

  35. Moutos, F. T., Freed, L. E. & Guilak, F. A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage. Nature Mater. 6, 162–167 (2007).

    CAS  Google Scholar 

  36. Sahiner, N., Jha, A. K., Nguyen, D. & Jia, X. Fabrication and characterization of cross-linkable hydrogel particles based on hyaluronic acid: potential application in vocal fold regeneration. J. Biomater. Sci. Polym. E 19, 223–243 (2008).

    CAS  Google Scholar 

  37. Li, W. J., Mauck, R. L., Cooper, J. A., Yuan, X. N. & Tuan, R. S. Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering. J. Biomech. 40, 1686–1693 (2007).

    Google Scholar 

  38. Millon, L. E., Mohammadi, H. & Wan, W. K. Anisotropic polyvinyl alcohol hydrogel for cardiovascular applications. J. Biomed. Mater. Res. B 79, 305–311 (2006).

    CAS  Google Scholar 

  39. Engelmayr, G. C. et al. Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nature Mater. 7, 1003–1010 (2008).

    CAS  Google Scholar 

  40. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    CAS  Google Scholar 

  41. Pelham, R. J. & Wang, Y. l. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl Acad. Sci. USA 94, 13661–13665 (1997).

    CAS  Google Scholar 

  42. Curtis, A. S., Dalby, M. & Gadegaard, N. Cell signaling arising from nanotopography: implications for nanomedical devices. Nanomedicine 1, 67–72 (2006).

    CAS  Google Scholar 

  43. Stevens, M. M. & George, J. H. Exploring and engineering the cell surface interface. Science 310, 1135–1138 (2005).

    CAS  Google Scholar 

  44. Cukierman, E., Pankov, R., Stevens, D. R. & Yamada, K. M. Taking cell-matrix adhesions to the third dimension. Science 294, 1708–1712 (2001).

    CAS  Google Scholar 

  45. Stephens, L. E. et al. Deletion of beta 1 integrins in mice results in inner cell mass failure and peri-implantation lethality. Genes Dev. 9, 1883–1895 (1995).

    CAS  Google Scholar 

  46. George, E. L., Georges-Labouesse, E. N., Patel-King, R. S., Rayburn, H. & Hynes, R. O. Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development 119, 1079–1091 (1993).

    CAS  Google Scholar 

  47. Kothapalli, D., Flowers, J., Xu, T., Pure, E. & Assoian, R. K. Differential activation of ERK and Rac mediates the proliferative and anti-proliferative effects of hyaluronan and CD44. J. Biol. Chem. 283, 31823–31829 (2008).

    CAS  Google Scholar 

  48. Serban, M. A. & Prestwich, G. D. Modular extracellular matrices: Solutions for the puzzle. Methods 45, 93–98 (2008).

    CAS  Google Scholar 

  49. Bonzani, I. C. et al. Synthesis of two-component injectable polyurethanes for bone tissue engineering. Biomaterials 28, 423–433 (2007).

    CAS  Google Scholar 

  50. Kim, K. & Fisher, J. P. Nanoparticle technology in bone tissue engineering. J. Drug Target. 15, 241–252 (2007).

    CAS  Google Scholar 

  51. Lendlein, A. & Langer, R. Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296, 1673–1676 (2002).

    Google Scholar 

  52. Lee, J., Bae, Y. H., Sohn, Y. S. & Jeong, B. Thermogelling aqueous solutions of alternating multiblock copolymers of poly(L-lactic acid) and poly(ethylene glycol). Biomacromolecules 7, 1729–1734 (2006).

    CAS  Google Scholar 

  53. Baroli, B. Hydrogels for tissue engineering and delivery of tissue-inducing substances. J. Pharm. Sci. 96, 2197–2223 (2007).

    CAS  Google Scholar 

  54. Benoit, D. S. W., Schwartz, M. P., Durney, A. R. & Anseth, K. S. Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nature Mater. 7, 816–823 (2008).

    CAS  Google Scholar 

  55. Schense, J. C., Bloch, J., Aebischer, P. & Hubbell, J. A. Enzymatic incorporation of bioactive peptides into fibrin matrices enhances neurite extension. Nature Biotech. 18, 415–419 (2000).

    CAS  Google Scholar 

  56. Silva, G. A. et al. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303, 1352–1355 (2004).

    CAS  Google Scholar 

  57. Underwood, P. A., Bennett, F. A., Kirkpatrick, A., Bean, P. A. & Moss, B. A. Evidence for the location of a binding sequence for the alpha 2 beta 1 integrin of endothelial cells, in the beta 1 subunit of laminin. Biochem. J. 309, 765–771 (1995).

    CAS  Google Scholar 

  58. Comisar, W. A., Kazmers, N. H., Mooney, D. J. & Linderman, J. J. Engineering RGD nanopatterned hydrogels to control preosteoblast behavior: A combined computational and experimental approach. Biomaterials 28, 4409–4417 (2007).

    CAS  Google Scholar 

  59. Benoit, D. S. W. & Anseth, K. S. The effect on osteoblast function of colocalized RGD and PHSRN epitopes on PEG surfaces. Biomaterials 26, 5209–5220 (2005).

    CAS  Google Scholar 

  60. Alsberg, E., Anderson, K. W., Albeiruti, A., Rowley, J. A. & Mooney, D. J. Engineering growing tissues. Proc. Natl Acad. Sci. USA 99, 12025–12030 (2002).

    CAS  Google Scholar 

  61. de Mel, A., Jell, G., Stevens, M. M. & Seifalian, A. M. Biofunctionalization of biomaterials for accelerated in situ endothelialization: A review. Biomacromolecules 9, 2969–2979 (2008).

    CAS  Google Scholar 

  62. Dunehoo, A. L. et al. Cell adhesion molecules for targeted drug delivery. J. Pharm. Sci. 95, 1856–1872 (2006).

    CAS  Google Scholar 

  63. Lutolf, M. P. et al. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc. Natl Acad. Sci. USA 100, 5413–5418 (2003).

    CAS  Google Scholar 

  64. Girotti, A. et al. Design and bioproduction of a recombinant multi(bio)functional elastin-like protein polymer containing cell adhesion sequences for tissue engineering purposes. J. Mater. Sci. Mater. Med. 15, 479–484 (2004).

    CAS  Google Scholar 

  65. Schenk, S. & Quaranta, V. Tales from the crypt[ic] sites of the extracellular matrix. Trends Cell Biol. 13, 366–375 (2003).

    CAS  Google Scholar 

  66. Shaub, A. Unravelling the extracellular matrix. Nature Cell Biol. 1, E173-E175 (1999).

    CAS  Google Scholar 

  67. Hocking, D. C., Sottile, J. & Keown-Longo, P. J. Fibronectin's III-1 module contains a conformation-dependent binding site for the amino-terminal region of fibronectin. J. Biol. Chem. 269, 19183–19187 (1994).

    CAS  Google Scholar 

  68. Wipff, P. J., Rifkin, D. B., Meister, J. J. & Hinz, B. Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix. J. Cell Biol. 179, 1311–1323 (2007).

    CAS  Google Scholar 

  69. Polesskaya, A., Seale, P. & Rudnicki, M. A. Wnt signaling induces the myogenic specification of resident CD45+ adult stem cells during muscle regeneration. Cell 113, 841–852 (2003).

    CAS  Google Scholar 

  70. Wang, Z. Z. et al. Endothelial cells derived from human embryonic stem cells form durable blood vessels in vivo. Nature Biotechnol. 25, 317–318 (2007).

    CAS  Google Scholar 

  71. Jiang, W. et al. In vitro derivation of functional insulin-producing cells from human embryonic stem cells. Cell Res. 17, 333–344 (2007).

    CAS  Google Scholar 

  72. Sumi, T., Tsuneyoshi, N., Nakatsuji, N. & Suemori, H. Defining early lineage specification of human embryonic stem cells by the orchestrated balance of canonical Wnt/beta-catenin, activin/nodal and BMP signaling. Development 135, 2969–2979 (2008).

    CAS  Google Scholar 

  73. Hill, E., Boontheekul, T. & Mooney, D. J. Regulating activation of transplanted cells controls tissue regeneration. Proc. Natl Acad. Sci. USA 103, 2494–2499 (2006).

    CAS  Google Scholar 

  74. Hanson, J. A. et al. Nanoscale double emulsions stabilized by single-component block copolypeptides. Nature 455, 85–88 (2008).

    CAS  Google Scholar 

  75. Richardson, T. P., Peters, M. C., Ennett, A. B. & Mooney, D. J. Polymeric system for dual growth factor delivery. Nature Biotechnol. 19, 1029–1034 (2001).

    CAS  Google Scholar 

  76. Sohier, J. et al. Dual release of proteins from porous polymeric scaffolds. J. Controlled Release 111, 95–106 (2006).

    CAS  Google Scholar 

  77. Liu, H. W., Chen, C. H., Tsai, C. L. & Hsiue, G. H. Targeted delivery system for juxtacrine signaling growth factor based on rhBMP-2-mediated carrier-protein conjugation. Bone 39, 825–836 (2006).

    CAS  Google Scholar 

  78. Alberti, K. et al. Functional immobilization of signaling proteins enables control of stem cell fate. Nature Methods 5, 645–650 (2008).

    CAS  Google Scholar 

  79. Klenkler, B. J. Characterization of EGF coupling to aminated silicone rubber surfaces. Biotechnol. Bioeng. 95, 1158–1166 (2006).

    CAS  Google Scholar 

  80. Mann, B. K., Schmedlen, R. H. & West, J. L. Tethered-TGF-β increases extracellular matrix production of vascular smooth muscle cells. Biomaterials 22, 439–444 (2001).

    CAS  Google Scholar 

  81. Backer, M. V., Patel, V., Jehning, B. T., Claffey, K. P. & Backer, J. M. Surface immobilization of active vascular endothelial growth factor via a cysteine-containing tag. Biomaterials 27, 5452–5458 (2006).

    CAS  Google Scholar 

  82. Zisch, A. H., Schenk, U., Schense, J. C., Sakiyama-Elbert, S. E. & Hubbell, J. A. Covalently conjugated VEGF-fibrin matrices for endothelialization. J. Controlled Release 72, 101–113 (2001).

    CAS  Google Scholar 

  83. Raman, R., Sasisekharan, V. & Sasisekharan, R. Structural insights into biological roles of protein–glycosaminoglycan interactions. Chem. Biol. 12, 267–277 (2005).

    CAS  Google Scholar 

  84. Rawat, M., Gama, C. I., Matson, J. B. & Hsieh-Wilson, L. C. Neuroactive chondroitin sulfate glycomimetics. J. Am. Chem. Soc. 130, 2959–2961 (2008).

    CAS  Google Scholar 

  85. Gama, C. I. et al. Sulfation patterns of glycosaminoglycans encode molecular recognition and activity. Nature Chem. Biol. 2, 467–473 (2006).

    CAS  Google Scholar 

  86. Pellegrini, L., Burke, D. F., von Delft, F., Mulloy, B. & Blundell, T. L. Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin. Nature 407, 1029–1034 (2000).

    CAS  Google Scholar 

  87. Sakiyama-Elbert, S. E. & Hubbell, J. A. Development of fibrin derivatives for controlled release of heparin-binding growth factors. J. Controlled Release 65, 389–402 (2000).

    CAS  Google Scholar 

  88. Zhang, L., Furst, E. M. & Kiick, K. L. Manipulation of hydrogel assembly and growth factor delivery via the use of peptide-polysaccharide interactions. J. Controlled Release 114, 130–142 (2006).

    CAS  Google Scholar 

  89. Singh, M., Berkland, C. & Detamore, M. S. Strategies and applications for incorporating physical and chemical signal gradients in tissue engineering. Tissue Eng. B 14, 341–366 (2008).

    CAS  Google Scholar 

  90. Lin, X., Takahashi, K., Liu, Y., Derrien, A. & Zamora, P. O. A synthetic, bioactive PDGF mimetic with binding to both α-PDGF and β-PDGF receptors. Growth Factors 25, 87–93 (2007).

    CAS  Google Scholar 

  91. Lin, X. et al. Synthetic peptide F2A4-K-NS mimics fibroblast growth factor-2 in vitro and is angiogenic in vivo. Int. J. Mol. Med. 17, 833–839 (2006).

    CAS  Google Scholar 

  92. Cambon, K. et al. A synthetic neural cell adhesion molecule mimetic peptide promotes synaptogenesis, enhances presynaptic function, and facilitates memory consolidation. J. Neurosci. 24, 4197–4204 (2004).

    CAS  Google Scholar 

  93. Nie, H. & Wang, C. H. Fabrication and characterization of PLGA/HAp composite scaffolds for delivery of BMP-2 plasmid DNA. J. Controlled Release 120, 111–121 (2007).

    CAS  Google Scholar 

  94. Wrighton, N. C. et al. Increased potency of an erythropoietin peptide mimetic through covalent dimerization. Nature Biotechnol. 15, 1261–1265 (1997).

    CAS  Google Scholar 

  95. Domling, A., Beck, B., Baumbach, W. & Larbig, G. Towards erythropoietin mimicking small molecules. Bioorg. Med. Chem. Lett. 17, 379–384 (2007).

    Google Scholar 

  96. Hwang, N. S., Varghese, S. & Elisseeff, J. Controlled differentiation of stem cells. Adv. Drug Deliv. Rev. 60, 199–214 (2008).

    CAS  Google Scholar 

  97. Hench, L. L. & Paschall, H. A. Direct chemical bond of bioactive glass-ceramic materials to bone and muscle. J. Biomed. Mater. Res. 7, 25–42 (1973).

    CAS  Google Scholar 

  98. Xynos, I. D., Edgar, A. J., Buttery, L. D., Hench, L. L. & Polak, J. M. Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass 45S5 dissolution. J. Biomed. Mater. Res. 55, 151–157 (2001).

    CAS  Google Scholar 

  99. Barbucci, R. et al. Fibroblast cell behavior on bound and adsorbed fibronectin onto hyaluronan and sulfated hyaluronan substrates. Biomacromolecules 6, 638–645 (2005).

    CAS  Google Scholar 

  100. Freeman, I., Kedem, A. & Cohen, S. The effect of sulfation of alginate hydrogels on the specific binding and controlled release of heparin-binding proteins. Biomaterials 29, 3260–3268 (2008).

    CAS  Google Scholar 

  101. Rouet, V. et al. A synthetic glycosaminoglycan mimetic binds vascular endothelial growth factor and modulates angiogenesis. J. Biol. Chem. 280, 32792–32800 (2005).

    CAS  Google Scholar 

  102. Chaterji, S. & Gemeinhart, R. A. Enhanced osteoblast-like cell adhesion and proliferation using sulfonate-bearing polymeric scaffolds. J. Biomed. Mater. Res. A 83, 990–998 (2007).

    Google Scholar 

  103. Guerrini, M. et al. Minimal heparin/heparan sulfate sequences for binding to fibroblast growth factor-1. Biochem. Biophys. Res. Commun. 292, 222–230 (2002).

    CAS  Google Scholar 

  104. Raman, R., Venkataraman, G., Ernst, S., Sasisekharan, V. & Sasisekharan, R. Structural specificity of heparin binding in the fibroblast growth factor family of proteins. Proc. Natl Acad. Sci. USA 100, 2357–2362 (2003).

    CAS  Google Scholar 

  105. Tully, S. E. et al. A chondroitin sulfate small molecule that stimulates neuronal growth. J. Am. Chem. Soc. 126, 7736–7737 (2004).

    CAS  Google Scholar 

  106. Lever, R. & Page, C. P. Novel drug development opportunities for heparin. Nature Rev. Drug Discov. 1, 140–148 (2002).

    CAS  Google Scholar 

  107. Sarrazin, S., Bonnaffe, D., Lubineau, A. & Lortat-Jacob, H. Heparan sulfate mimicry: a synthetic glycoconjugate that recognises the heparin binding domain of interferon-γ inhibits the cytokine activity. J. Biol. Chem. 280, 37558–37564 (2005).

    CAS  Google Scholar 

  108. Seeberger, P. H. & Werz, D. B. Synthesis and medical applications of oligosaccharides. Nature 446, 1046–1051 (2007).

    CAS  Google Scholar 

  109. Adibekian, A. et al. De novo synthesis of uronic acid building blocks for assembly of heparin oligosaccharides. Chem. Eur. J. 13, 4510–4522 (2007).

    CAS  Google Scholar 

  110. Tatai, J., Osztrovszky, G., Kajtár-Peredy, M. & Fügedi, P. An efficient synthesis of L-idose and L-iduronic acid thioglycosides and their use for the synthesis of heparin oligosaccharides. Carbohydr. Res. 343, 596–606 (2008).

    CAS  Google Scholar 

  111. Polat, T. & Wong, C. H. Anomeric reactivity-based one-pot synthesis of heparin-like oligosaccharides. J. Am. Chem. Soc. 129, 12795–12800 (2007).

    CAS  Google Scholar 

  112. Zhang, Z. et al. Solution structures of chemoenzymatically synthesized heparin and its precursors. J. Am. Chem. Soc. 130, 12998–13007 (2008).

    CAS  Google Scholar 

  113. Wakao, M. et al. Sugar chips immobilized with synthetic sulfated disaccharides of heparin/heparan sulfate partial structure. Bioorg. Med. Chem. Lett. 18, 2499–2504 (2008).

    CAS  Google Scholar 

  114. Woo, K. M., Chen, V. J. & Ma, P. X. Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment. J. Biomed. Mater. Res. A 67, 531–537 (2003).

    Google Scholar 

  115. Vogler, E. A. Structure and reactivity of water at biomaterial surfaces. Adv. Colloid Interface Sci. 74, 69–117 (1998).

    CAS  Google Scholar 

  116. Keselowsky, B. G., Collard, D. M. & García, A. J. Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation. Proc. Natl Acad. Sci. USA 102, 5953–5957 (2005).

    CAS  Google Scholar 

  117. Anderson, D. G., Putnam, D., Lavik, E. B., Mahmood, T. A. & Langer, R. Biomaterial microarrays: rapid, microscale screening of polymer-cell interaction. Biomaterials 26, 4892–4897 (2005).

    CAS  Google Scholar 

  118. Flaim, C. J., Chien, S. & Bhatia, S. N. An extracellular matrix microarray for probing cellular differentiation. Nature Methods 2, 119–125 (2005).

    CAS  Google Scholar 

  119. Anderson, D. G., Levenberg, S. & Langer, R. Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells. Nature Biotechnol. 22, 863–866 (2004).

    CAS  Google Scholar 

  120. Chen, J. L., Chu, B. & Hsiao, B. S. Mineralization of hydroxyapatite in electrospun nanofibrous poly(L-lactic acid) scaffolds. J. Biomed. Mater. Res. A 79, 307–317 (2006).

    Google Scholar 

  121. Song, J., Malathong, V. & Bertozzi, C. R. Mineralization of synthetic polymer scaffolds: a bottom-up approach for the development of artificial bone. J. Am. Chem. Soc. 127, 3366–3372 (2005).

    CAS  Google Scholar 

  122. Robey, P. G. in Principles of Bone Biology (eds Bilezikian, J. P., Raisz, L. G. & Rodan, G. A.) 225–237 (Academic, 2002).

    Google Scholar 

  123. Nuttelman, C. R., Benoit, D. S. W., Tripodi, M. C. & Anseth, K. S. The effect of ethylene glycol methacrylate phosphate in PEG hydrogels on mineralization and viability of encapsulated hMSCs. Biomaterials 27, 1377–1386 (2006).

    CAS  Google Scholar 

  124. von Degenfeld, G. et al. Microenvironmental VEGF distribution is critical for stable and functional vessel growth in ischemia. FASEB J. 20, 2657–2659 (2006).

    CAS  Google Scholar 

  125. Hao, X. et al. Angiogenic effects of sequential release of VEGF-A165 and PDGF-BB with alginate hydrogels after myocardial infarction. Cardiovasc. Res. 75, 178–185 (2007).

    CAS  Google Scholar 

  126. Trentin, D., Hall, H., Wechsler, S. & Hubbell, J. A. Peptide-matrix-mediated gene transfer of an oxygen-insensitive hypoxia-inducible factor-1α variant for local induction of angiogenesis. Proc. Natl Acad. Sci. USA 103, 2506–2511 (2006).

    CAS  Google Scholar 

  127. Saunders, W. B. et al. Coregulation of vascular tube stabilization by endothelial cell TIMP-2 and pericyte TIMP-3. J. Cell Biol. 175, 179–191 (2006).

    CAS  Google Scholar 

  128. Hunter, G. K. & Goldberg, H. A. Modulation of crystal formation by bone phosphoproteins: role of glutamic acid-rich sequences in the nucleation of hydroxyapatite by bone sialoprotein. Biochem. J. 302, 175–179 (1994).

    CAS  Google Scholar 

  129. Tye, C. E. et al. Delineation of the hydroxyapatite-nucleating domains of bone sialoprotein. J. Biol. Chem. 278, 7949–7955 (2003).

    CAS  Google Scholar 

  130. de Paz, J. L., Noti, C., Böhm, F., Werner, S. & Seeberger, P. H. Potentiation of fibroblast growth factor activity by synthetic heparin oligosaccharide glycodendrimers. Chem. Biol. 14, 879–887 (2007).

    CAS  Google Scholar 

  131. Lu, H. H. & Jiang, J. Interface tissue engineering and the formulation of multiple-tissue systems. Adv. Biochem. Eng. Biotechnol. 102, 91–111 (2006).

    CAS  Google Scholar 

  132. Schaefer, D. et al. In vitro generation of osteochondral composites. Biomaterials 21, 2599–2606 (2000).

    CAS  Google Scholar 

  133. O'Shea, T. M. & Miao, X. Bilayered scaffolds for osteochondral tissue engineering. Tissue Eng. B 14, 447–464 (2008).

    CAS  Google Scholar 

  134. Schek, R. M., Taboas, J. M., Segvich, S. J., Hollister, S. J. & Krebsbach, P. H. Engineered osteochondral grafts using biphasic composite solid free-form fabricated scaffolds. Tissue Eng. 10, 1376–1385 (2004).

    CAS  Google Scholar 

  135. Tampieri, A. et al. Design of graded biomimetic osteochondral composite scaffolds. Biomaterials 29, 3539–3546 (2008).

    CAS  Google Scholar 

  136. Kim, T.-K. et al. Experimental model for cartilage tissue engineering to regenerate the zonal organization of articular cartilage. Osteoarthr. Cartilage 11, 653–664 (2003).

    Google Scholar 

  137. Spalazzi, J. P. et al. In vivo evaluation of a multiphased scaffold designed for orthopaedic interface tissue engineering and soft tissue-to-bone integration. J. Biomed. Mater. Res. A 86, 1–12 (2008).

    Google Scholar 

  138. Phillips, J. E., Burns, K. L., Le Doux, J. M., Guldberg, R. E. & García, A. J. Engineering graded tissue interfaces. Proc. Natl Acad. Sci. USA 105, 12170–12175 (2008).

    CAS  Google Scholar 

  139. Cooper, J. A. et al. Biomimetic tissue-engineered anterior cruciate ligament replacement. Proc. Natl Acad. Sci. USA 104, 3049–3054 (2007).

    CAS  Google Scholar 

  140. Brey, E. M., Uriel, S., Greisler, H. P. & McIntire, L. V. Therapeutic neovascularization: contributions from bioengineering. Tissue Eng. 11, 567–584 (2005).

    CAS  Google Scholar 

  141. Koike, N. et al. Tissue engineering: Creation of long-lasting blood vessels. Nature 428, 138–139 (2004).

    CAS  Google Scholar 

  142. Fischbach, C. & Mooney, D. J. Polymers for pro- and anti-angiogenic therapy. Biomaterials 28, 2069–2076 (2007).

    CAS  Google Scholar 

  143. Ehrbar, M. et al. The role of actively released fibrin-conjugated VEGF for VEGF receptor 2 gene activation and the enhancement of angiogenesis. Biomaterials 29, 1720–1729 (2008).

    CAS  Google Scholar 

  144. Gao, J. & Messner, K. Quantitative comparison of soft tissue-bone interface at chondral ligament insertions in the rabbit knee joint. J. Anat. 188, 367–373 (1996).

    Google Scholar 

Download references

Acknowledgements

We thank R. Langer, K. Godula and A. Ratcliffe for feedback on the manuscript. M.M.S. acknowledges an ERC Individual Investigator Grant for funding, and EPSRC for the funding of E.S.P. and N.D.E.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Molly M. Stevens.

Supplementary information

Supplementary Information

Supplementary information (PDF 288 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Place, E., Evans, N. & Stevens, M. Complexity in biomaterials for tissue engineering. Nature Mater 8, 457–470 (2009). https://doi.org/10.1038/nmat2441

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2441

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing