Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spraying asymmetry into functional membranes layer-by-layer

Abstract

As engineers strive to mimic the form and function of naturally occurring materials with synthetic alternatives, the challenges and costs of processing often limit creative innovation. Here we describe a powerful yet economical technique for developing multiple coatings of different morphologies and functions within a single textile membrane, enabling scientists to engineer the properties of a material from the nanoscopic level in commercially viable quantities. By simply varying the flow rate of charged species passing through an electrospun material during spray-assisted layer-by-layer deposition, individual fibres within the matrix can be conformally functionalized for ultrahigh-surface-area catalysis, or bridged to form a networked sublayer with complimentary properties. Exemplified here by the creation of selectively reactive gas purification membranes, the myriad applications of this technology also include self-cleaning fabrics, water purification and protein functionalization of scaffolds for tissue engineering.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Demonstration of multifunctionalization process on ES mats.
Figure 2: Growth mechanism as a function of flow rate past ES fibres.
Figure 3: Entire cross-section of a multifunctionalized ES membrane.
Figure 4: CEES permeation test results.
Figure 5: Observed trade-off between reactive properties and water-vapour transport rates.

Similar content being viewed by others

References

  1. Bretsche, M. S. Membrane structure—some general principles. Science 181, 622–629 (1973).

    Article  Google Scholar 

  2. Rothman, J. E. & Lenard, J. Membrane asymmetry. Science 195, 743–753 (1977).

    Article  CAS  Google Scholar 

  3. Sridhar, S., Smitha, B. & Aminabhavi, T. M. Separation of carbon dioxide from natural gas mixtures through polymeric membranes—a review. Sep. Purif. Rev. 36, 113–174 (2007).

    Article  CAS  Google Scholar 

  4. Decher, G. Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science 277, 1232–1237 (1997).

    Article  CAS  Google Scholar 

  5. Shiratori, S. S. & Rubner, M. F. pH-dependent thickness behavior of sequentially adsorbed layers of weak polyelectrolytes. Macromolecules 33, 4213–4219 (2000).

    Article  CAS  Google Scholar 

  6. Dubas, S. T. & Schlenoff, J. B. Factors controlling the growth of polyelectrolyte multilayers. Macromolecules 32, 8153–8160 (1999).

    Article  CAS  Google Scholar 

  7. Lee, D., Rubner, M. F. & Cohen, R. E. All-nanoparticle thin-film coatings. Nano Lett. 6, 2305–2312 (2006).

    Article  CAS  Google Scholar 

  8. Lvov, Y., Ariga, K., Onda, M., Ichinose, I. & Kunitake, T. Alternate assembly of ordered multilayers of SiO2 and other nanoparticles and polyions. Langmuir 13, 6195–6203 (1997).

    Article  CAS  Google Scholar 

  9. Iler, R. K. Multilayers of colloidal particles. J. Colloid Interface Sci. 21, 569–594 (1966).

    Article  CAS  Google Scholar 

  10. Caruso, F., Caruso, R. A. & Mohwald, H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 282, 1111–1114 (1998).

    Article  CAS  Google Scholar 

  11. Yoo, P. J. et al. Spontaneous assembly of viruses on multilayered polymer surfaces. Nature Mater. 5, 234–240 (2006).

    Article  CAS  Google Scholar 

  12. Tang, Z. Y., Wang, Y., Podsiadlo, P. & Kotov, N. A. Biomedical applications of layer-by-layer assembly: From biomimetics to tissue engineering. Adv. Mater. 18, 3203–3224 (2006).

    Article  CAS  Google Scholar 

  13. Hammond, P. T. Form and function in multilayer assembly: New applications at the nanoscale. Adv. Mater. 16, 1271–1293 (2004).

    CAS  Google Scholar 

  14. Schlenoff, J. B., Dubas, S. T. & Farhat, T. Sprayed polyelectrolyte multilayers. Langmuir 16, 9968–9969 (2000).

    Article  CAS  Google Scholar 

  15. Izquierdo, A., Ono, S. S., Voegel, J. C., Schaaff, P. & Decher, G. Dipping versus spraying: Exploring the deposition conditions for speeding up layer-by-layer assembly. Langmuir 21, 7558–7567 (2005).

    Article  CAS  Google Scholar 

  16. Krogman, K. C., Zacharia, N. S., Schroeder, S. & Hammond, P. T. Automated process for improved uniformity and versatility of layer-by-layer deposition. Langmuir 23, 3137–3141 (2007).

    Article  CAS  Google Scholar 

  17. Fridrikh, S. V., Yu, J. H., Brenner, M. P. & Rutledge, G. C. Controlling the fiber diameter during electrospinning. Phys. Rev. Lett. 90, 144502 (2003).

    Article  Google Scholar 

  18. Chen, L., Bromberg, L., Hatton, T. A. & Rutledge, G. C. Electrospun cellulose acetate fibers containing chlorhexidine as a bactericide. Polymer 49, 1266–1275 (2008).

    Article  CAS  Google Scholar 

  19. Lee, J. A. et al. Highly reactive multilayer-assembled TiO2 coating on electrospun polymer nanofibers. Adv. Mater. 21, 1252–1256 (2009).

    Article  CAS  Google Scholar 

  20. Chen, L. et al. Chemical protection fabrics via surface oximation of electrospun polyacrylonitrile fiber mats. J. Mater. Chem. (2009, in the press).

  21. Blossey, R. Self-cleaning surfaces—virtual realities. Nature Mater. 2, 301–306 (2003).

    Article  CAS  Google Scholar 

  22. Daoud, W. A. et al. Self-cleaning keratins. Chem. Mater. 20, 1242–1244 (2008).

    Article  CAS  Google Scholar 

  23. Peercy, P. S. The drive to miniaturization. Nature 406, 1023–1026 (2000).

    Article  CAS  Google Scholar 

  24. Simon, P. & Gogotsi, Y. Materials for electrochemical capacitors. Nature Mater. 7, 845–854 (2008).

    Article  CAS  Google Scholar 

  25. Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).

    Article  CAS  Google Scholar 

  26. Yoon, J. et al. Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. Nature Mater. 7, 907–915 (2008).

    Article  CAS  Google Scholar 

  27. Shin, Y. M., Hohman, M. M., Brenner, M. P. & Rutledge, G. C. Experimental characterization of electrospinning: The electrically forced jet and instabilities. Polymer 42, 9955–9967 (2001).

    Article  CAS  Google Scholar 

  28. Deen, W. M. Analysis of Transport Phenomena 6th edn (Oxford Univ. Press, 1998).

    Google Scholar 

  29. Krogman, K. C., Zacharia, N. S., Grillo, D. M. & Hammond, P. T. Photocatalytic layer-by-layer coatings for degradation of acutely toxic agents. Chem. Mater. 20, 1924–1930 (2008).

    Article  CAS  Google Scholar 

  30. Crank, J. The Mathematics of Diffusion 2nd edn (Oxford Univ. Press, 1975).

    Google Scholar 

  31. Frisch, H. L. Time lag in transport theory. J. Chem. Phys. 36, 510–516 (1962).

    Article  CAS  Google Scholar 

  32. Wijmans, J. G. & Baker, R. W. The solution-diffusion model: A review. J. Membrane Sci. 107, 1–21 (1995).

    Article  CAS  Google Scholar 

  33. Peinemann, K., Abetz, V. & Simon, P. F. W. Asymmetric superstructure formed in a block copolymer via phase separation. Nature Mater. 6, 992–996 (2007).

    Article  CAS  Google Scholar 

  34. Mi, F. et al. Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing. Biomaterials 22, 165–173 (2001).

    Article  CAS  Google Scholar 

  35. Shannon, M. A. et al. Science and technology for water purification in the coming decades. Nature 452, 301–310 (2008).

    Article  CAS  Google Scholar 

  36. Corry, B. Designing carbon nanotube membranes for efficient water desalination. J. Phys. Chem. B 112, 1427–1434 (2008).

    Article  CAS  Google Scholar 

  37. Ma, M. L. et al. Decorated electrospun fibers exhibiting superhydrophobicity. Adv. Mater. 19, 255–259 (2007).

    Article  CAS  Google Scholar 

  38. Cao, Q. et al. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 454, 495–500 (2008).

    Article  CAS  Google Scholar 

  39. Hall, L. J. et al. Sign change of Poisson’s ratio for carbon nanotube sheets. Science 320, 504–507 (2008).

    Article  CAS  Google Scholar 

  40. Barnes, C. P., Sell, S. A., Boland, E. D., Simpson, D. G. & Bowlin, G. L. Nanofiber technology: Designing the next generation of tissue engineering scaffolds. Adv. Drug Delivery Rev. 59, 1413–1433 (2007).

    Article  CAS  Google Scholar 

  41. Dankers, P. Y. W., Harmsen, M. C., Brouwer, L. A., Van Luyn, M. J. A. & Meijer, E. W. A modular and supramolecular approach to bioactive scaffolds for tissue engineering. Nature Mater. 4, 568–574 (2005).

    Article  CAS  Google Scholar 

  42. Grafahrend, D. et al. Control of protein adsorption on functionalized electrospun fibers. Biotechnol. Bioeng. 101, 609–621 (2008).

    Article  CAS  Google Scholar 

  43. Heydarkhan-Hagvall, S., Schenke-Layland, K. & Dhanasopon, A. P. Three-dimensional electrospun ECM-based hybrid scaffolds for cardiovascular tissue engineering. Biomaterials 29, 2907–2914 (2008).

    Article  CAS  Google Scholar 

  44. Zhang, X. H., Baughman, C. B. & Kaplan, D. L. In vitro evaluation of electrospun silk fibroin scaffolds for vascular cell growth. Biomaterials 29, 2217–2227 (2008).

    Article  CAS  Google Scholar 

  45. Park, J. H., Kim, B. S., Yoo, Y. C., Khil, M. S. & Kim, H. Y. Enhanced mechanical properties of multilayer nano-coated electrospun nylon 6 fibers via a layer-by-layer self-assembly. J. Appl. Polym. Sci. 107, 2211–2216 (2008).

    Article  CAS  Google Scholar 

  46. Gibson, P. W., Kendrick, C. E. & Rivin, D. Apparatus and method for determining transport properties of porous materials. US Patent No. 6,119,506 (1999).

Download references

Acknowledgements

This research was supported in part by the US Army through the Institute for Soldier Nanotechnologies under contract DAAD-19-02-0002 with the US Army Research Office, and by the G. Nicholas and Dorothea K. Dumbros Scholarship and Fellowship Fund. The content does not necessarily reflect the position of the government, and no official endorsement should be inferred. The authors would like to thank H. Schreuder-Gibson and P. Gibson of the US Army Soldier Systems Center for assistance with water-vapour permeation testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula T. Hammond.

Supplementary information

Supplementary Information

Supplementary Information (PDF 437 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krogman, K., Lowery, J., Zacharia, N. et al. Spraying asymmetry into functional membranes layer-by-layer. Nature Mater 8, 512–518 (2009). https://doi.org/10.1038/nmat2430

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2430

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing