Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Towards high charge-carrier mobilities by rational design of the shape and periphery of discotics

Abstract

Discotic liquid crystals are a promising class of materials for molecular electronics thanks to their self-organization and charge transporting properties. The best discotics so far are built around the coronene unit and possess six-fold symmetry. In the discotic phase six-fold-symmetric molecules stack with an average twist of 30, whereas the angle that would lead to the greatest electronic coupling is 60. Here, a molecule with three-fold symmetry and alternating hydrophilic/hydrophobic side chains is synthesized and X-ray scattering is used to prove the formation of the desired helical microstructure. Time-resolved microwave-conductivity measurements show that the material has indeed a very high mobility, 0.2 cm2 V−1 s−1. The assemblies of molecules are simulated using molecular dynamics, confirming the model deduced from X-ray scattering. The simulated structures, together with quantum-chemical techniques, prove that mobility is still limited by structural defects and that a defect-free assembly could lead to mobilities in excess of 10 cm2 V−1 s−1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Absolute value of the transfer integral J as a function of the azimuthal rotation angle for several symmetric polyaromatic hydrocarbon cores.
Figure 2
Figure 3: Two-dimensional wide-angle X-ray scattering patterns and corresponding schematic illustrations of top-viewed molecules stacked on top of one another.
Figure 4: Charge mobilities as a function of temperature as measured by the PR-TRMC technique.
Figure 5: Representative simulation snapshots.
Figure 6: Distribution functions of the relative molecular orientations and transfer integrals.

Similar content being viewed by others

References

  1. Demus, D., Goodby, J., Gray, G. W., Spiess, H. W. & Vill, V. Handbook of Liquid Crystals (Wiley–VCH, 1998).

    Book  Google Scholar 

  2. Laschat, S. et al. Discotic liquid crystals: From tailor-made synthesis to plastic electronics. Angew. Chem. Int. Ed. 46, 4832–4887 (2007).

    Article  CAS  Google Scholar 

  3. Sergeyev, S., Pisula, W. & Geerts, Y. H. Discotic liquid crystals: A new generation of organic semiconductors. Chem. Soc. Rev. 36, 1902–1929 (2007).

    Article  CAS  Google Scholar 

  4. van de Graats, A. M. et al. The mobility of charge carriers in all four phases of the columnar discotic material hexakis(hexylthio)triphenylene: Combined TOF and PR-TRMC results. Adv. Mater. 8, 823–826 (1996).

    Article  Google Scholar 

  5. Xiao, S. X. et al. Molecular wires from contorted aromatic compounds. Angew. Chem. Int. Ed. 44, 7390–7394 (2005).

    Article  CAS  Google Scholar 

  6. Pisula, W. et al. A zone-casting technique for device fabrication of field-effect transistors based on discotic hexa-peri-hexabenzoeoronene. Adv. Mater. 17, 684–689 (2005).

    Article  CAS  Google Scholar 

  7. Schmidt-Mende, L. et al. Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. Science 293, 1119–1122 (2001).

    Article  CAS  Google Scholar 

  8. van de Craats, A. M. et al. Record charge carrier mobility in a room-temperature discotic liquid-crystalline derivative of hexabenzocoronene. Adv. Mater. 11, 1469–1472 (1999).

    Article  CAS  Google Scholar 

  9. Adam, D. et al. Fast photoconduction in the highly ordered columnar phase of a discotic liquid-crystal. Nature 371, 141–143 (1994).

    Article  CAS  Google Scholar 

  10. Marcus, R. A. Electron-transfer reactions in chemistry—theory and experiment. Rev. Mod. Phys. 65, 599–610 (1993).

    Article  CAS  Google Scholar 

  11. Freed, K. F. & Jortner, J. Multiphonon processes in nonradiative decay of large molecules. J. Chem. Phys. 52, 6272–6291 (1970).

    Article  CAS  Google Scholar 

  12. Coropceanu, V. et al. Charge transport in organic semiconductors. Chem. Rev. 107, 926–952 (2007).

    Article  CAS  Google Scholar 

  13. Lemaur, V. et al. Charge transport properties in discotic liquid crystals: A quantum-chemical insight into structure–property relationships. J. Am. Chem. Soc. 126, 3271–3279 (2004).

    Article  CAS  Google Scholar 

  14. Cornil, J., Lemaur, V., Calbert, J. P. & Bredas, J. L. Charge transport in discotic liquid crystals: A molecular scale description. Adv. Mater. 14, 726–729 (2002).

    Article  CAS  Google Scholar 

  15. Bassler, H. Charge transport in disordered organic photoconductors—a Monte-Carlo simulation study. Phys. Status Solidi B 175, 15–56 (1993).

    Article  Google Scholar 

  16. Kirkpatrick, J., Marcon, V., Nelson, J., Kremer, K. & Andrienko, D. Charge mobility of discotic mesophases: A multiscale quantum and classical study. Phys. Rev. Lett. 98, 227402 (2007).

    Article  Google Scholar 

  17. Percec, V., Won, B. C., Peterca, M. & Heiney, P. A. Expanding the structural diversity of self-assembling dendrons and supramolecular dendrimers via complex building blocks. J. Am. Chem. Soc. 129, 11265–11278 (2007).

    Article  CAS  Google Scholar 

  18. Prins, L. J., Huskens, J., de Jong, F., Timmerman, P. & Reinhoudt, D. N. Complete asymmetric induction of supramolecular chirality in a hydrogen-bonded assembly. Nature 398, 498–502 (1999).

    Article  CAS  Google Scholar 

  19. Papapostolou, D. et al. Engineering nanoscale order into a designed protein fiber. Proc. Natl Acad. Sci. USA 104, 10853–10858 (2007).

    Article  CAS  Google Scholar 

  20. Shimizu, T., Masuda, M. & Minamikawa, H. Supramolecular nanotube architectures based on amphiphilic molecules. Chem. Rev. 105, 1401–1443 (2005).

    Article  CAS  Google Scholar 

  21. Hoeben, F. J. M., Jonkheijm, P., Meijer, E. W. & Schenning, A. About supramolecular assemblies of pi-conjugated systems. Chem. Rev. 105, 1491–1546 (2005).

    Article  CAS  Google Scholar 

  22. McCulloch, I. et al. Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nature Mater. 5, 328–333 (2006).

    Article  CAS  Google Scholar 

  23. Feng, X., Pisula, W. & Mullen, K. From helical to staggered stacking of zigzag nanographenes. J. Am. Chem. Soc. 129, 14116–14117 (2007).

    Article  CAS  Google Scholar 

  24. Pisula, W. et al. Relation between supramolecular order and charge carrier mobility of branched alkyl hexa-peri-hexabenzocoronenes. Chem. Mater. 18, 3634–3640 (2006).

    Article  CAS  Google Scholar 

  25. Kastler, M. et al. Organization of charge-carrier pathways for organic electronics. Adv. Mater. 18, 2255–2259 (2006).

    Article  CAS  Google Scholar 

  26. Feng, X. L. et al. Triangle-shaped polycyclic aromatic hydrocarbons. Angew. Chem. Int. Ed. 46, 3033–3036 (2007).

    Article  CAS  Google Scholar 

  27. Andrienko, D., Kirkpatrick, J., Marcon, V., Nelson, J. & Kremer, K. Structure–charge mobility relation for hexabenzocoronene derivatives. Phys. Status Solidi B 245, 830–834 (2008).

    Article  CAS  Google Scholar 

  28. Holst, H. C., Pakula, T. & Meier, H. Liquid crystals in the series of 2,4,6-tristyryl-1,3,5-triazines. Tetrahedron 60, 6765–6775 (2004).

    Article  CAS  Google Scholar 

  29. Barbera, J. et al. Supramolecular helical stacking of metallomesogens derived from enantiopure and racemic polycatenar oxazolines. J. Am. Chem. Soc. 125, 4527–4533 (2003).

    Article  CAS  Google Scholar 

  30. Gearba, R. I. et al. Mesomorphism, polymorphism, and semicrystalline morphology of poly(di-n-propylsiloxane). Macromolecules 39, 988–999 (2006).

    Article  CAS  Google Scholar 

  31. Barbera, J. et al. Cyclotriphosphazene as a dendritic core for the preparation of columnar supermolecular liquid crystals. Chem. Mater. 18, 5437–5445 (2006).

    Article  CAS  Google Scholar 

  32. Livolant, F., Levelut, A. M., Doucet, J. & Benoit, J. P. The highly concentrated liquid-crystalline phase of DNA is columnar hexagonal. Nature 339, 724–726 (1989).

    Article  CAS  Google Scholar 

  33. Watson, J. D. & Crick, F. H. C. Molecular structure of nucleic acids—a structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953).

    Article  CAS  Google Scholar 

  34. Percec, V. et al. Self-assembly of semifluorinated minidendrons attached to electron-acceptor groups into pyramidal columns. Chem. Eur. J. 13, 3330–3345 (2007).

    Article  CAS  Google Scholar 

  35. Pisula, W., Kastler, M., Yang, C., Enkelmann, V. & Mullen, K. Columnar mesophase formation of cyclohexa-m-phenylene-based macrocycles. Chem. Asian J. 2, 51–56 (2007).

    CAS  Google Scholar 

  36. Percec, V. et al. Synthesis, structural, and retrostructural analysis of helical dendronized poly(1-naphthylacetylene)s. J. Polym. Sci. A 45, 4974–4987 (2007).

    Article  CAS  Google Scholar 

  37. Sakurai, S. I. et al. Two-dimensional helix-bundle formation of a dynamic helical poly(phenylacetylene) with achiral pendant groups on graphite. Angew. Chem. Int. Ed. 46, 7605–7608 (2007).

    Article  CAS  Google Scholar 

  38. Pisula, W. et al. Helical packing of discotic hexaphenyl hexa-peri-hexabenzocoronenes: Theory and experiment. J. Phys. Chem. B 111, 7481–7487 (2007).

    Article  CAS  Google Scholar 

  39. Wu, J. S., Watson, M. D., Zhang, L., Wang, Z. H. & Mullen, K. Hexakis(4-iodophenyl)-peri-hexabenzocoronene—A versatile building block for highly ordered discotic liquid crystalline materials. J. Am. Chem. Soc. 126, 177–186 (2004).

    Article  CAS  Google Scholar 

  40. Glusen, B., Heitz, W., Kettner, A. & Wendorff, J. H. A plastic columnar discotic phase D-p. Liquid Cryst. 20, 627–633 (1996).

    Article  Google Scholar 

  41. Brown, S. P. & Spiess, H. W. Advanced solid-state NMR methods for the elucidation of structure and dynamics of molecular, macromolecular, and supramolecular systems. Chem. Rev. 101, 4125–4155 (2001).

    Article  CAS  Google Scholar 

  42. van de Graats, A. M. et al. The mobility of charge carriers in all four phases of the columnar discotic material hexakis(hexylthio)triphenylene: Combined TOF and PR-TRMC results. Adv. Mater. 8, 823–826 (1996).

    Article  Google Scholar 

  43. Debije, M. G. et al. The optical and charge transport properties of discotic materials with large aromatic hydrocarbon cores. J. Am. Chem. Soc. 126, 4641–4645 (2004).

    Article  CAS  Google Scholar 

  44. Deng, W. Q. & Goddard, W. A. Predictions of hole mobilities in oligoacene organic semiconductors from quantum mechanical calculations. J. Phys. Chem. B 108, 8614–8621 (2004).

    Article  CAS  Google Scholar 

  45. Marcon, V. et al. Columnar mesophases of hexabenzocoronene derivatives. I. Phase transitions. J. Chem. Phys. 129, 094505 (2008).

    Article  Google Scholar 

  46. Kirkpatrick, J., Marcon, V., Kremer, K., Nelson, J. & Andrienko, D. Columnar mesophases of hexabenzocoronene derivatives: II. Charge carrier mobility. J. Chem. Phys. 129, 094506 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the EU project NAIMO (NMP-CT-2004-500355), the Max Planck Society through the program ENERCHEM, the German Science Foundation (Korean–German IRTG) and DFG Priority Program SPP 1355. D.A. acknowledges DFG grant AN 680/1-1. V.M. acknowledges the Alexander von Humboldt Foundation. J.K. acknowledges the EPSRC. V.M., J.K., K.K. and D.A. acknowledge the Multiscale Materials Modeling Initiative of the Max Planck Society. We thank R. Graf and H. W. Spiess for discussions. M.R.H. thanks the Carlsberg Foundation for financial support in the form of a research fellowship. Naurod von Hessen is gratefully acknowledged for catalysing this collaboration.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Denis Andrienko or Klaus Müllen.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, X., Marcon, V., Pisula, W. et al. Towards high charge-carrier mobilities by rational design of the shape and periphery of discotics. Nature Mater 8, 421–426 (2009). https://doi.org/10.1038/nmat2427

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2427

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing