Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A one-dimensional ice structure built from pentagons

Abstract

Heterogeneous ice nucleation has a key role in fields as diverse as atmospheric chemistry and biology. Ice nucleation on metal surfaces affords an opportunity to watch this process unfold at the molecular scale on a well-defined, planar interface. A common feature of structural models for such films is that they are built from hexagonal arrangements of molecules. Here we show, through a combination of scanning tunnelling microscopy, infrared spectroscopy and density-functional theory, that about 1-nm-wide ice chains that nucleate on Cu(110) are not built from hexagons, but instead are built from a face-sharing arrangement of water pentagons. The pentagon structure is favoured over others because it maximizes the water–metal bonding while maintaining a strong hydrogen-bonding network. It reveals an unanticipated structural adaptability of water–ice films, demonstrating that the presence of the substrate can be sufficient to favour non-hexagonal structural units.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental STM images of water on Cu(110).
Figure 2: Models for 1D water chains on Cu(110).
Figure 3: Experimental and computed infrared spectra for 1D water chains on Cu(110).
Figure 4: Interaction between pentagon chains and relative energies of hexagon and pentagon chains on various metal surfaces.

Similar content being viewed by others

References

  1. Yamada, T., Tamamori, S. & Okuyama, H. Anisotropic water chain growth on Cu(110) observed with scanning tunneling microscopy. Phys. Rev. Lett. 96, 036105 (2006).

    Article  CAS  Google Scholar 

  2. Lee, J., Sorescu, D. C., Jordan, K. D. & Yates, J. T. Jr. Hydroxyl chain formation on the Cu(110) surface: Watching water dissociation. J. Phys. Chem. C 112, 17672–17677 (2008).

    Article  CAS  Google Scholar 

  3. Feibelman, P. J. Partial dissociation of water on Ru(0001). Science 295, 99–102 (2002).

    Article  CAS  Google Scholar 

  4. Menzel, D. Surface science—Water on a metal surface. Science 295, 58–59 (2002).

    Article  CAS  Google Scholar 

  5. Michaelides, A. & Morgenstern, K. Ice nanoclusters at hydrophobic metal surfaces. Nature Mater. 6, 597–601 (2007).

    Article  CAS  Google Scholar 

  6. Cerda, J. et al. Novel water overlayer growth on Pd(111) characterized with scanning tunneling microscopy and density functional theory. Phys. Rev. Lett. 93, 116101 (2004).

    Article  CAS  Google Scholar 

  7. Ogasawara, H. et al. Structure and bonding of water on Pt(111). Phys. Rev. Lett. 89, 276102 (2002).

    Article  CAS  Google Scholar 

  8. Andersson, K., Nikitin, A., Pettersson, L. G. M., Nilsson, A. & Ogasawara, H. Water dissociation on Ru(001): An activated process. Phys. Rev. Lett. 93, 196101 (2004).

    Article  CAS  Google Scholar 

  9. Weissenrieder, J., Mikkelsen, A., Andersen, J. N., Feibelman, P. J. & Held, G. Experimental evidence for a partially dissociated water bilayer on Ru(0001). Phys. Rev. Lett. 93, 196102 (2004).

    Article  Google Scholar 

  10. Haq, S., Clay, C., Darling, G. R., Zimbitas, G. & Hodgson, A. Growth of intact water ice on Ru(0001) between 140 and 160 K: Experiment and density-functional theory calculations. Phys. Rev. B 73, 115414 (2006).

    Article  Google Scholar 

  11. Meng, S., Wang, E. G. & Gao, S. W. Water adsorption on metal surfaces: A general picture from density functional theory studies. Phys. Rev. B 69, 195404 (2004).

    Article  Google Scholar 

  12. Yang, Y., Meng, S. & Wang, E. G. Water adsorption on a NaCl (001) surface: A density functional theory study. Phys. Rev. B 74, 245409 (2006).

    Article  Google Scholar 

  13. Ren, J. & Meng, S. Atomic structure and bonding of water overlayer on Cu(110): The borderline for intact and dissociative adsorption. J. Am. Chem. Soc. 128, 9282–9283 (2006).

    Article  CAS  Google Scholar 

  14. Ren, J. & Meng, S. First-principles study of water on copper and noble metal (110) surfaces. Phys. Rev. B 77, 054110 (2008).

    Article  Google Scholar 

  15. Schiros, T. et al. Structure of water adsorbed on the open Cu(110) surface: H-up, H-down, or both? Chem. Phys. Lett. 429, 415–419 (2006).

    Article  CAS  Google Scholar 

  16. Andersson, K. et al. Molecularly intact and dissociative adsorption of water on clean Cu(110): A comparison with the water/Ru(001) system. Surf. Sci. 585, L183–L189 (2005).

    Article  CAS  Google Scholar 

  17. Bange, K., Grider, D. E., Madey, T. E. & Sass, J. K. The surface-chemistry of H2O on clean and oxygen-covered Cu(110). Surf. Sci. 136, 38–64 (1984).

    Article  Google Scholar 

  18. Thiel, P. A. & Madey, T. E. The interaction of water with solid-surfaces—fundamental-aspects. Surf. Sci. Rep. 7, 211–385 (1987).

    Article  CAS  Google Scholar 

  19. Schiros, T. Water-Metal Surfaces. Doctoral Thesis in Chemical Physics (Stockholm Univ. 2008).

  20. Ma, B.-Q., Sun, H.-L. & Gao, S. Cyclic water pentamer in a tape-like structure. Chem. Commun. 2220–2221 (2004).

  21. Naskar, J. P., Drew, M. G. B., Hulme, A., Tocher, D. A. & Datta, D. Occurrence of ribbons of cyclic water pentamers in a metallo-organic framework formed by spontaneous fixation of CO2 . Cryst. Eng. Comm. 7, 67–70 (2005).

    Article  CAS  Google Scholar 

  22. Kresse, G. & Hafner, J. Ab initio molecular-dynamics for liquid-metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  23. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  24. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  25. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  26. Tersoff, J. & Hamann, D. R. Theory and application for the scanning tunneling microscope. Phys. Rev. Lett. 50, 1998–2001 (1983).

    Article  CAS  Google Scholar 

  27. Michaelides, A., Alavi, A. & King, D. A. Insight into H2O-ice adsorption and dissociation on metal surfaces from first-principles simulations. Phys. Rev. B 69, 113404 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

J.C. acknowledges financial support from the Alexander von Humboldt Foundation and the Royal Society. A.M.’s work is supported by a EURYI award (see www.esf.org/euryi) and by the EPSRC. A.H. acknowledges support by the EPSRC and R.R. by the EPSRC and BBSRC. Through our membership of the UK’s HPC Materials Chemistry Consortium, which is funded by the EPSRC (EP/F067496), this work made use of the facilities of HECToR, the UK’s national high-performance computing service, which is provided by UoE HPCx Ltd at the University of Edinburgh, Cray Inc and NAG Ltd, and funded by the Office of Science and Technology through EPSRC’s High End Computing Programme. We are also grateful to the London Centre for Nanotechnology for computational resources and to Peter Feibelman for his helpful comments on an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelos Michaelides.

Supplementary information

Supplementary Information

Supplementary Information (PDF 821 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carrasco, J., Michaelides, A., Forster, M. et al. A one-dimensional ice structure built from pentagons. Nature Mater 8, 427–431 (2009). https://doi.org/10.1038/nmat2403

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2403

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing