Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

X-ray imaging beyond the limits

Abstract

The intense, brief pulses of X-rays from upcoming free-electron lasers will greatly extend X-ray microscopy to the femtosecond time domain and to interatomic length scales. From recent experiments and simulations one can envisage imaging macromolecules with X-rays without the need for crystallization.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Images of an exploding nanostructure.
Figure 2: Protein molecules, virus particles, nanocrystals and cells can be delivered in vacuum to a high-intensity X-ray FEL pulse, in droplets of water or other liquids.
Figure 3: Diffraction patterns from single objects differ from patterns of crystals consisting of repeats of those objects.

References

  1. http://www-ssrl.slac.stanford.edu/lcls/

  2. Neutze, R., Wouts, R., van der Spoel, D., Weckert, E. & Hajdu, J. Nature 406, 753–757 (2000).

    Article  Google Scholar 

  3. Shintake, T. et al. Nature Photon. 2, 555–559 (2008).

    Article  CAS  Google Scholar 

  4. http://www.xfel.eu/

  5. Ackermann, W. et al. Nature Photon. 1, 336–342 (2007).

    Article  Google Scholar 

  6. Emma, P. et al. Phys. Rev. Lett. 92, 074801 (2004).

    Article  CAS  Google Scholar 

  7. Ade, H. & Stoll, H. Nature Mater. 8, 281–290 (2009).

    Article  CAS  Google Scholar 

  8. Miao, J., Charalambous, P., Kirz, J. & Sayre, D. Nature 400, 342–344 (1999).

    Article  CAS  Google Scholar 

  9. Schlotter, W.F. et al. Opt. Lett. 32, 3110–3112 (2007).

    Article  Google Scholar 

  10. Chapman, H. N. et al. Nature 448, 676–679 (2007).

    Article  CAS  Google Scholar 

  11. Barty, A. et al. Nature Photon. 2, 415–419 (2008).

    Article  CAS  Google Scholar 

  12. Cavalieri, A. L. et al. Phys. Rev. Lett. 94, 114–801 (2005).

    Article  Google Scholar 

  13. Grubel, G., Stephenson, G.B., Gutt, C., Sinn, H. & Tschentscher, T. Nucl. Instrum. Methods Phys. Res. B 262, 357–367 (2007).

    Article  Google Scholar 

  14. Robinson, I. & Harder, R. Nature Mater. 8, 291–298 (2009).

    Article  CAS  Google Scholar 

  15. Chapman, H. N. et al. Nature Phys. 2, 839–843 (2006).

    Article  CAS  Google Scholar 

  16. Henderson, R. Q. Rev. Biophys. 28, 171 (1995).

    Article  CAS  Google Scholar 

  17. Howells, M. R. et al. J. Electron Spectrosc. Rel. Phenom. 10.1016/j.elspec.2008.10.008 (2008).

  18. Solem, J.C. & Baldwin, G. C. Science 218, 229–235 (1982).

    Article  CAS  Google Scholar 

  19. Solem, J.C. J.Opt. Soc. Am. B 3, 1551–1565 (1986).

    Article  CAS  Google Scholar 

  20. Bergh, M., Huldt, G., Tmneanu, N., Maia, F. & Hajdu, J. Q.Rev. Biophys. 41, 181–204 (2008).

    Article  CAS  Google Scholar 

  21. Cerbino, R. et al. Nature Phys. 4, 238–243 (2008).

    Article  CAS  Google Scholar 

  22. Schmidt, K.E. et al. Phys. Rev. Lett. 101, 115–507 (2008).

    Google Scholar 

  23. Weierstall, U. et al. Exp. Fluids 44, 675–689 (2008).

    Article  CAS  Google Scholar 

  24. Bogan, M. J. et al. Nano Lett. 8, 310–316 (2008).

    Article  CAS  Google Scholar 

  25. Hau-Riege, S.P., London, R. A., Chapman, H. N., Szoke, A. & Timneanu, N. Phys. Rev. Lett. 98, 198302 (2007).

    Article  Google Scholar 

  26. Spence, J.C. H. & Doak, R. B. Phys. Rev. Lett. 92, 198102 (2004).

    Article  CAS  Google Scholar 

  27. Ho, P.J. & Santra, R. Phys. Rev. A 78, 053409 (2008).

    Article  Google Scholar 

  28. Fung, R., Shneerson, V., Saldin, D.K. & Ourmazd, A. Nature Phys. 5, 64–67 (2008).

    Article  Google Scholar 

  29. Elser, V. Preprint at http://arxiv.org/abs/0709.3858v1 (2007).

  30. DePonte, D.P. et al. J. Phys. D 41, 195505 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chapman, H. X-ray imaging beyond the limits. Nature Mater 8, 299–301 (2009). https://doi.org/10.1038/nmat2402

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2402

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing