Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons

Abstract

Graphene shows promise as a future material for nanoelectronics owing to its compatibility with industry-standard lithographic processing, electron mobilities up to 150 times greater than Si and a thermal conductivity twice that of diamond. The electronic structure of graphene nanoribbons (GNRs) and quantum dots (GQDs) has been predicted to depend sensitively on the crystallographic orientation of their edges; however, the influence of edge structure has not been verified experimentally. Here, we use tunnelling spectroscopy to show that the electronic structure of GNRs and GQDs with 2–20 nm lateral dimensions varies on the basis of the graphene edge lattice symmetry. Predominantly zigzag-edge GQDs with 7–8 nm average dimensions are metallic owing to the presence of zigzag edge states. GNRs with a higher fraction of zigzag edges exhibit a smaller energy gap than a predominantly armchair-edge ribbon of similar width, and the magnitudes of the measured GNR energy gaps agree with recent theoretical calculations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Atomic-resolution imaging of GQDs and GNRs.
Figure 2: Energy gap (Eg)–size (L) relation for GQDs.
Figure 3: STM topographs of the GQDs included in the EgL plot in Fig. 2.
Figure 4: Comparison of a zigzag- and mixed-edge GQD using spatially resolved tunnelling spectroscopy.
Figure 5: Detection of zigzag-edge state for GQDs.
Figure 6: Tunnelling spectroscopy of three 20–30-nm-long, 2–3-nm-wide GNRs.

Similar content being viewed by others

References

  1. Bardeen, J. Surface states and rectification at a metal–semiconductor contact. Phys. Rev. 71, 717–727 (1947).

    Article  Google Scholar 

  2. Kilby, J. S. Miniaturized electronic circuit. US Patent No. 3,138,743 (Issued June 23, 1964; Filed Feb. 6, 1959).

  3. Ponomarenko, L. A. et al. Chaotic Dirac billiard in graphene quantum dots. Science 320, 356–358 (2008).

    Article  CAS  Google Scholar 

  4. Han, M. Y., Özyilmaz, B., Zhang, Y. & Kim, P. Energy band gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).

    Article  Google Scholar 

  5. Chen, Z., Lin, Y., Rooks, M. J. & Avouris, P. Graphene-nanoribbon electronics. Physica E 40, 228–232 (2007).

    Article  CAS  Google Scholar 

  6. Li, X., Wang, X., Zhang, L., Lee, S. & Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008).

    Article  CAS  Google Scholar 

  7. Lin, Y.-M., Perebeinos, V., Chen, Z. & Avouris, P. Conductance quantization in graphene nanoribbons. Preprint at <http://arxiv.org/abs/0805.0035> (2008).

  8. Adam, S., Cho, S., Fuhrer, M. S. & Das Sarma, S. Density inhomogeneity driven percolation metal–insulator transition and dimensional crossover in graphene nanoribbons. Phys. Rev. Lett. 101, 046404 (2008).

    Article  CAS  Google Scholar 

  9. Son, Y.-W., Cohen, M. L. & Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006).

    Article  Google Scholar 

  10. Barone, V., Hod, O. & Scuseria, G. E. Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett. 6, 2748–2754 (2006).

    Article  CAS  Google Scholar 

  11. Son, Y.-W., Cohen, M. M. & Louie, S. G. Half-metallic graphene nanoribbons. Nature 444, 347–349 (2006).

    Article  CAS  Google Scholar 

  12. Fujita, M., Wakabayashi, K., Nakada, K. & Kusakabe, K. Peculiar localized state at zigzag graphite edge. J. Phys. Soc. Jpn. 65, 1920–1923 (1996).

    Article  CAS  Google Scholar 

  13. Sols, F., Guinea, F. & Castro Neto, A. H. Coulomb blockade in graphene nanoribbons. Phys. Rev. Lett. 99, 166803 (2007).

    Article  CAS  Google Scholar 

  14. Querlioz, D. et al. Suppression of the orientation effects on bandgap in graphene nanoribbons in the presence of edge disorder. Appl. Phys. Lett. 92, 42108 (2008).

    Article  Google Scholar 

  15. Gunlycke, D., Areshkin, D. A. & White, C. T. Semiconducting graphene nanostrips with edge disorder. Appl. Phys. Lett. 90, 142104 (2007).

    Article  Google Scholar 

  16. Ritter, K. A. & Lyding, J. W. Characterization of nanometer-sized, mechanically exfoliated graphene on the H-passivated Si(100) surface using scanning tunneling microscopy. Nanotechnology 19, 015704 (2008).

    Article  Google Scholar 

  17. Ishigami, M., Chen, J. H., Cullen, W. G., Fuhrer, M. S. & Williams, E. D. Atomic structure of graphene on SiO2 . Nano Lett. 7, 1643–1648 (2007).

    Article  CAS  Google Scholar 

  18. Stolyarova, E. et al. High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface. Proc. Natl Acad. Sci. 104, 9209–9212 (2007).

    Article  CAS  Google Scholar 

  19. Kobayashi, Y., Fukui, K., Enoki, T. & Kusakabe, K. Edge state on hydrogen-terminated graphite edges investigated by scanning tunneling microscopy. Phys. Rev. B 73, 125415 (2006).

    Article  Google Scholar 

  20. Kobayashi, Y., Fukui, K., Enoki, T., Kusakabe, K. & Kaburagi, Y. Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy. Phys. Rev. B 71, 193406 (2005).

    Article  Google Scholar 

  21. Nimi, Y. et al. Scanning tunneling microscopy and spectroscopy of the electronic local density of states of graphite surfaces near monoatomic step edges. Phys. Rev. B 73, 085421 (2006).

    Article  Google Scholar 

  22. Rutter, G. M. et al. Scattering and interference in epitaxial graphene. Science 317, 219–222 (2007).

    Article  CAS  Google Scholar 

  23. Tapasztó, L., Dobrik, G., Lambin, P. & Biró, L. P. Tailoring the atomic structure of graphene nanoribbons using scanning tunneling microscope lithography. Nature Nanotech. 3, 397–401 (2008).

    Article  Google Scholar 

  24. Piva, P. G. et al. Field regulation of single-molecule conductivity by a charged surface atom. Nature 435, 658–661 (2005).

    Article  CAS  Google Scholar 

  25. Liu, L., Yu, J. & Lyding, J. W. Atom-resolved three-dimensional mapping of boron dopants in Si(100) by scanning tunneling microscopy. Appl. Phys. Lett. 78, 386–388 (2001).

    Article  CAS  Google Scholar 

  26. Berger, C. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006).

    Article  CAS  Google Scholar 

  27. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    Article  CAS  Google Scholar 

  28. Nakada, K., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B. 54, 17954–17960 (1996).

    Article  CAS  Google Scholar 

  29. Klusek, Z. et al. Observation of local electron states on the edges of circular pits on hydrogen-etched graphite surface by scanning tunneling spectroscopy. Appl. Surf. Sci. 161, 508–514 (2000).

    Article  CAS  Google Scholar 

  30. Zhang, Z. Z., Chang, K. & Peeters, F. M. Tuning of energy levels and optical properties of graphene quantum dots. Phys. Rev. B 77, 235411 (2008).

    Article  Google Scholar 

  31. Datta, S. S., Strachan, D. R., Khamis, S. M. & Johnson, A. T. C. Crystallographic etching of few-layer graphene. Nano Lett. 8, 1912–1915 (2008).

    Article  CAS  Google Scholar 

  32. Lyding, J. W., Skala, S., Hubacek, J. S., Brockenbrough, R. & Gammie, G. Variable-temperature scanning tunneling microscope. Rev. Sci. Instrum. 59, 1897–1902 (1988).

    Article  Google Scholar 

  33. Feenstra, R. M. Tunneling spectroscopy of the (110) surface of direct-gap III–V semiconductors. Phys. Rev. B 50, 4561–4570 (1994).

    Article  CAS  Google Scholar 

  34. Albrecht, P. M. & Lyding, J. W. Ultrahigh-vacuum scanning tunneling microscopy and spectroscopy of single-walled carbon nanotubes on hydrogen-passivated Si(100) surfaces. Appl. Phys. Lett. 83, 5029–5031 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Office of Naval Research under grant number N000140610120 and by the National Science Foundation grant number NSF ECS 04-03489. K.A.R. acknowledges support from a NDSEG fellowship. We thank J. Koepke for assistance with a portion of the data collection, L. Ruppalt for providing the code for the normalized dI/dV calculations and P. Albrecht, P. Dollfus, D. Querlioz, A. Rockett, M. Sztelle and J. Weaver for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

K.A.R and J.W.L. conceived the experiments. K.A.R. carried out the experiments, analysed the data and wrote the manuscript. J.W.L. provided technical support for the instrumentation, discussed the data and commented on the manuscript.

Corresponding author

Correspondence to Kyle A. Ritter.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3973 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ritter, K., Lyding, J. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nature Mater 8, 235–242 (2009). https://doi.org/10.1038/nmat2378

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2378

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing