Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Linking catalyst composition to chirality distributions of as-grown single-walled carbon nanotubes by tuning NixFe1−x nanoparticles

Abstract

Chirally pure single-walled carbon nanotubes (SWCNTs) are required for various applications ranging from nanoelectronics to nanomedicine1. Although significant efforts have been directed towards separation of SWCNT mixtures, including density-gradient ultracentrifugation 2, chromatography3 and electrophoresis4, the initial chirality distribution is determined during growth and must be controlled for non-destructive, scalable and economical production. Here, we show that the chirality distribution of as-grown SWCNTs can be altered by varying the composition of NixFe1−x nanocatalysts. Precise tuning of the nanocatalyst composition at constant size is achieved by a new gas-phase synthesis route based on an atmospheric-pressure microplasma. The link between the composition-dependent crystal structure of the nanocatalysts and the resulting nanotube chirality supports epitaxial models and is a step towards chiral-selective growth of SWCNTs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microcharacterization of as-synthesized Ni and NixFe1−x nanocatalysts.
Figure 2: Ultraviolet–visible–NIR absorbance spectra of SDS-dispersed SWCNTs.
Figure 3: Micro-Raman spectra of SWCNTs.
Figure 4: Photoluminescence (PL) of SDS-dispersed SWCNTs.

Similar content being viewed by others

References

  1. Baughman, R. H., Zakhidov, A. A. & de Heer, W. A. Carbon nanotubes—the route toward applications. Science 297, 787–792 (2002).

    Article  CAS  Google Scholar 

  2. Arnold, M. S. et al. Sorting carbon nanotubes by electronic structure using density differentiation. Nature Nanotech. 1, 60–65 (2006).

    Article  CAS  Google Scholar 

  3. Zheng, M. et al. DNA-assisted dispersion and separation of carbon nanotubes. Nature Mater. 2, 338–342 (2003).

    Article  CAS  Google Scholar 

  4. Krupke, R., Hennrich, F., von Lohneysen, H. & Kappes, M. M. Separation of metallic from semiconducting single-walled carbon nanotubes. Science 301, 344–347 (2003).

    Article  CAS  Google Scholar 

  5. Bachilo, S. M. et al. Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298, 2361–2366 (2002).

    Article  CAS  Google Scholar 

  6. Hata, K. et al. Water-assisted highly efficient synthesis of impurity-free single-waited carbon nanotubes. Science 306, 1362–1364 (2004).

    Article  CAS  Google Scholar 

  7. Takagi, D. et al. Single-walled carbon nanotube growth from highly activated metal nanoparticles. Nano Lett. 6, 2642–2645 (2006).

    Article  CAS  Google Scholar 

  8. Li, Y. M. et al. Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced CVD method. Nano Lett. 4, 317–321 (2004).

    Article  CAS  Google Scholar 

  9. Qu, L. et al. Preferential syntheses of semiconducting vertically aligned single-walled carbon nanotubes for direct use in FETs. Nano Lett. 8, 2682–2687 (2008).

    Article  CAS  Google Scholar 

  10. Wang, B. et al. Pressure-induced single-walled carbon nanotube (n, m) selectivity on Co–Mo catalysts. J. Phys. Chem. C 111, 14612–14616 (2007).

    Article  CAS  Google Scholar 

  11. Wang, B. et al. (n, m) selectivity of single-walled carbon nanotubes by different carbon precursors on Co–Mo catalysts. J. Am. Chem. Soc. 129, 9014–9019 (2007).

    Article  CAS  Google Scholar 

  12. Li, N. et al. Diameter tuning of single-walled carbon nanotubes with reaction temperature using a Co monometallic catalyst. J. Phys. Chem. C 113, 10070–10078 (2009).

    Article  CAS  Google Scholar 

  13. Bachilo, S. M. et al. Narrow (n, m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst. J. Am. Chem. Soc. 125, 11186–11187 (2003).

    Article  CAS  Google Scholar 

  14. Li, X. L. et al. Selective synthesis combined with chemical separation of single-walled carbon nanotubes for chirality selection. J. Am. Chem. Soc. 129, 15770–15771 (2007).

    Article  CAS  Google Scholar 

  15. Miyauchi, Y. H. et al. Fluorescence spectroscopy of single-walled carbon nanotubes synthesized from alcohol. Chem. Phys. Lett. 387, 198–203 (2004).

    Article  CAS  Google Scholar 

  16. Zhang, M., Yudasaka, M. & Iijima, S. Production of large-diameter single-wall carbon nanotubes by adding Fe to a NiCo catalyst in laser ablation. J. Phys. Chem. B 108, 12757–12762 (2004).

    Article  CAS  Google Scholar 

  17. Herrera, J. E. et al. Relationship between the structure/composition of Co–Mo catalysts and their ability to produce single-walled carbon nanotubes by CO disproportionation. J. Catalysis 204, 129–145 (2001).

    Article  CAS  Google Scholar 

  18. Chiang, W. H. & Sankaran, R. M. Microplasma synthesis of metal nanoparticles for gas-phase studies of catalyzed carbon nanotube growth. Appl. Phys. Lett. 91, 121503 (2007).

    Article  Google Scholar 

  19. Chiang, W. H. & Sankaran, R. M. In flight dimensional tuning of metal nanoparticles by microplasma synthesis for selective production of diameter-controlled carbon nanotubes. J. Phys. Chem. C 112, 17920–17925 (2008).

    Article  CAS  Google Scholar 

  20. Chiang, W.-H. & Sankaran, R. M. Synergistic effects in bimetallic nanoparticles for low temperature carbon nanotube growth. Adv. Mater. 20, 4857–4861 (2008).

    Article  CAS  Google Scholar 

  21. McKeehan, L. W. The crystal structure of iron–nickel alloys. Phys. Rev. 21, 402–407 (1923).

    Article  CAS  Google Scholar 

  22. Kataura, H. et al. Optical properties of single-wall carbon nanotubes. Synth. Met. 103, 2555–2558 (1999).

    Article  CAS  Google Scholar 

  23. Samsonidze, G. G. et al. Quantitative evaluation of the octadecylamine-assisted bulk separation of semiconducting and metallic single-wall carbon nanotubes by resonance Raman spectroscopy. Appl. Phys. Lett. 85, 1006–1008 (2004).

    Article  CAS  Google Scholar 

  24. Kanzow, H. et al. Single-wall carbon nanotube diameter distributions calculated from experimental parameters. Phys. Rev. B. 63, 125402 (2001).

    Article  Google Scholar 

  25. Ding, F. et al. The importance of strong-carbon–metal adhesion for catalytic nucleation of single-walled carbon nanotubes. Nano Lett. 8, 463–468 (2008).

    Article  CAS  Google Scholar 

  26. Gomez-Gualdron, D. A. & Balbuena, P. B. Effect of metal cluster-cap interactions on the catalyzed growth of single-wall carbon nanotubes. J. Phys. Chem. C 113, 698–709 (2009).

    Article  CAS  Google Scholar 

  27. Reich, S., Li, L. & Robertson, J. Control the chirality of carbon nanotubes by epitaxial growth. Chem. Phys. Lett. 421, 469–472 (2006).

    Article  CAS  Google Scholar 

  28. Yudasaka, M. et al. Causes of different catalytic activities of metals in formation of single-walled carbon nanotubes. Appl. Phys. A 74, 377–385 (2002).

    Article  CAS  Google Scholar 

  29. Hersam, M. C. Progress towards monodisperse single-walled carbon nanotubes. Nature Nanotech. 3, 387–394 (2008).

    Article  CAS  Google Scholar 

  30. Strano, M. S. et al. Electronic structure control of single-walled carbon nanotube functionalization. Science 301, 1519–1522 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the technical assistance of A. Avishai (TEM), A. K. McIlwain (XRD), K. Singer (ultraviolet–visible–NIR), R. Silvestri and J. Koenig (micro-Raman spectroscopy), M. Barkley and E. Arts (ultracentrifuging) and F. Du and L. Dai at University of Dayton (multiline micro-Raman spectroscopy). The authors are also grateful to C. C. Liu and J. Angus for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Mohan Sankaran.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1768 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiang, WH., Mohan Sankaran, R. Linking catalyst composition to chirality distributions of as-grown single-walled carbon nanotubes by tuning NixFe1−x nanoparticles. Nature Mater 8, 882–886 (2009). https://doi.org/10.1038/nmat2531

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2531

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing