Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The effect of nanometre-scale structure on interfacial energy

Abstract

Natural surfaces are often structured with nanometre-scale domains, yet a framework providing a quantitative understanding of how nanostructure affects interfacial energy, γSL, is lacking. Conventional continuum thermodynamics treats γSL solely as a function of average composition, ignoring structure. Here we show that, when a surface has domains commensurate in size with solvent molecules, γSL is determined not only by its average composition but also by a structural component that causes γSL to deviate from the continuum prediction by a substantial amount, as much as 20% in our system. By contrasting surfaces coated with either molecular- (<2 nm) or larger-scale domains (>5 nm), we find that whereas the latter surfaces have the expected linear dependence of γSL on surface composition, the former show a markedly different non-monotonic trend. Molecular dynamics simulations show how the organization of the solvent molecules at the interface is controlled by the nanostructured surface, which in turn appreciably modifies γSL.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustrating the fabrication of the different SAMs studied.
Figure 2: Experimental results.
Figure 3: Simulation results.
Figure 4: Plot of the deviation of WSL as a function of composition from a linear trend.

References

  1. Bizzarri, A. R. & Cannistraro, S. Molecular dynamics of water at the protein-solvent interface. J. Phys. Chem. B 106, 6617–6633 (2002).

    Article  CAS  Google Scholar 

  2. Hoffmann, M. R., Martin, S. T., Choi, W. Y. & Bahnemann, D. W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96 (1995).

    Article  CAS  Google Scholar 

  3. Zhdanov, V. P. & Kasemo, B. Kinetics of electrochemical reactions: From single crystals to nm-sized supported particles. Surf. Sci. 521, L655–L661 (2002).

    Article  CAS  Google Scholar 

  4. Stevens, M. M. & George, J. H. Exploring and engineering the cell surface interface. Science 310, 1135–1138 (2005).

    Article  CAS  Google Scholar 

  5. Rogers, K. R. Principles of affinity-based biosensors. Mol. Biotech. 14, 109–129 (2000).

    Article  CAS  Google Scholar 

  6. Willard, A. P. & Chandler, D. The role of solvent fluctuations in hydrophobic assembly. J. Phys. Chem. B 112, 6187–6192 (2008).

    Article  CAS  Google Scholar 

  7. Oregan, B. & Gratzel, M. A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991).

    Article  CAS  Google Scholar 

  8. Frauenfelder, H., Fenimore, P. W., Chen, G. & McMahon, B. H. Protein folding is slaved to solvent motions. Proc. Natl Acad. Sci. USA 103, 15469–15472 (2006).

    Article  CAS  Google Scholar 

  9. Ulman, A. Formation and structure of self-assembled monolayers. Chem. Rev. 96, 1533–1554 (1996).

    Article  CAS  Google Scholar 

  10. Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G. & Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105, 1103–1169 (2005).

    Article  CAS  Google Scholar 

  11. Mrksich, M. & Whitesides, G. M. Using self-assembled monolayers to understand the interactions of man-made surfaces with proteins and cells. Annu. Rev. Biophys. Biomol. Struct. 25, 55–78 (1996).

    Article  CAS  Google Scholar 

  12. Stranick, S. J. et al. Nanometer-scale phase separation in mixed composition self-assembled monolayers. Nanotechnology 7, 438–442 (1996).

    Article  CAS  Google Scholar 

  13. Pace, C. N., Treviño, S., Prabhakaran, E. & Scholtz, J. M. Protein structure, stability and solubility in water and other solvents. Phil. Trans. R. Soc. B 359, 1225–1235 (2004).

    Article  CAS  Google Scholar 

  14. Stranick, S. J., Parikh, A. N., Tao, Y. T., Allara, D. L. & Weiss, P. S. Phase-separation of mixed-composition self-assembled monolayers into nanometer-scale molecular domains. J. Phys. Chem. 98, 7636–7646 (1994).

    Article  CAS  Google Scholar 

  15. Centrone, A. et al. The role of nanostructure in the wetting behaviour of mixed-monolayer-protected metal nanoparticles. Proc. Natl Acad. Sci. USA 105, 9886–9891 (2008).

    Article  CAS  Google Scholar 

  16. Jackson, A. M., Myerson, J. W. & Stellacci, F. Spontaneous assembly of subnanometre-ordered domains in the ligand shell of monolayer-protected nanoparticles. Nature Mater. 3, 330–336 (2004).

    Article  CAS  Google Scholar 

  17. Singh, C. et al. Entropy-mediated patterning of surfactant-coated nanoparticles and surfaces. Phys. Rev. Lett. 99, 226106 (2007).

    Article  Google Scholar 

  18. Carney, R. P. et al. Size limitations for the formation of ordered striped nanoparticles. J. Am. Chem. Soc. 130, 798–799 (2008).

    Article  CAS  Google Scholar 

  19. Jackson, A. M., Hu, Y., Silva, P. J. & Stellacci, F. From homoligand- to mixed-ligand-monolayer-protected metal nanoparticles: A scanning tunnelling microscopy investigation. J. Am. Chem. Soc. 128, 11135–11149 (2006).

    Article  CAS  Google Scholar 

  20. Dupré, A. Théorie Mécanique de La Chaleur (Gauthier-Villars, 1869).

    Google Scholar 

  21. Young, T. An essay on the cohesion of fluids. Phil. Trans. R. Soc. Lond. (1804).

  22. Laibinis, P. E., Fox, M. A., Folkers, J. P. & Whitesides, G. M. Comparisons of self-assembled monolayers on silver and gold—mixed monolayers derived from Hs(Ch2)21x and Hs(Ch2)10y (X,Y=Ch3, Ch2oh) have similar properties. Langmuir 7, 3167–3173 (1991).

    Article  CAS  Google Scholar 

  23. Wenzel, R. N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28, 988–994 (1936).

    Article  CAS  Google Scholar 

  24. Barthlott, W. & Neinhuis, C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202, 1–8 (1997).

    Article  CAS  Google Scholar 

  25. Chow, T. S. Wetting of rough surfaces. J. Phys. Condens. Matter 10, L445–L451 (1998).

    Article  CAS  Google Scholar 

  26. Gennes, P. G. d. Soft Interfaces (Cambridge Univ. Press, 1994).

    Google Scholar 

  27. Cassie, A. B. D. & Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 40, 546–551 (1944).

    Article  CAS  Google Scholar 

  28. Bohlen, H., Parry, A. O., Diaz-Herrera, E. & Schoen, M. Intrusion of fluids into nanogrooves. Eur. Phys. J. E 25, 103–115 (2008).

    Article  CAS  Google Scholar 

  29. Schoen, M. Fluid bridges confined between chemically nanopatterned solid substrates. Phys. Chem. Chem. Phys. 10, 223–256 (2008).

    Article  CAS  Google Scholar 

  30. Imabayashi, S., Gon, N., Sasaki, T., Hobara, D. & Kakiuchi, T. Effect of nanometre-scale phase separation on wetting of binary self-assembled thiol monolayers on Au(111). Langmuir 14, 2348–2351 (1998).

    Article  CAS  Google Scholar 

  31. Maibaum, L. & Chandler, D. Segue between favorable and unfavorable solvation. J. Phys. Chem. B 111, 9025–9030 (2007).

    Article  CAS  Google Scholar 

  32. Shipway, A. N., Katz, E. & Willner, I. Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. Chem. Phys. Chem. 1, 18–52 (2000).

    Article  CAS  Google Scholar 

  33. Musick, M. D., Keating, C. D., Keefe, M. H. & Natan, M. J. Stepwise construction of conductive Au colloid multilayers from solution. Chem. Mater. 9, 1499–1501 (1997).

    Article  CAS  Google Scholar 

  34. Brust, M., Bethell, D., Kiely, C. J. & Schiffrin, D. J. Self-assembled gold nanoparticle thin films with nonmetallic optical and electronic properties. Langmuir 14, 5425–5429 (1998).

    Article  CAS  Google Scholar 

  35. Gao, L. C. & McCarthy, T. J. How Wenzel and Cassie were wrong. Langmuir 23, 3762–3765 (2007).

    Article  CAS  Google Scholar 

  36. O’Shea, S. J., Welland, M. E. & Pethica, J. B. Atomic-force microscopy of local compliance at solid–liquid interfaces. Chem. Phys. Lett. 223, 336–340 (1994).

    Article  Google Scholar 

  37. O’Shea, S. J. & Welland, M. E. Atomic force microscopy at solid–liquid interfaces. Langmuir 14, 4186–4197 (1998).

    Article  Google Scholar 

  38. Lantz, M., Liu, Y. Z., Cui, X. D., Tokumoto, H. & Lindsay, S. M. Dynamic force microscopy in fluid. Surf. Interface Anal. 27, 354–360 (1999).

    Article  CAS  Google Scholar 

  39. Chandler, D. Interfaces and the driving force of hydrophobic assembly. Nature 437, 640–647 (2005).

    Article  CAS  Google Scholar 

  40. Giovambattista, N., Debenedetti, P. G. & Rossky, P. J. Hydration behaviour under confinement by nanoscale surfaces with patterned hydrophobicity and hydrophilicity. J. Phys. Chem. C 111, 1323–1332 (2007).

    Article  CAS  Google Scholar 

  41. Rajamani, S., Truskett, T. M. & Garde, S. Hydrophobic hydration from small to large lengthscales: Understanding and manipulating the crossover. Proc. Natl Acad. Sci. USA 102, 9475–9480 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

F.S. is grateful to the Packard Foundation and to the National Science Foundation CAREER Award (DMR 06-45323) for their generous awards. J.J.K. was partly supported by a National Science Foundation Graduate Research Fellowship. K.V. acknowledges financial support from the Swiss National Science Foundation. C.S., H.J. and S.C.G. acknowledge financial support from the National Science Foundation under grant number CTS-0403633. S.M. acknowledges financial support from the University of London Central Research Fund, the Institute of Biomedical Engineering and the Natural Sciences and Engineering Research Council of Canada. M.M.S. thanks the European Research Council for financial support.

Author information

Authors and Affiliations

Authors

Contributions

J.J.K., K.V. and F.S. conceived the experiments. J.J.K. and S.M. fabricated the nanoparticle films and carried out contact angle measurements. J.J.K. fabricated the large-domain films and carried out contact angle measurements. K.V. carried out AFM measurements and analysed the AFM data, except roughness measurements (J.J.K.). J.J.K., K.V., S.M., M.M.S. and F.S. analysed the experimental data. C.S., H.J., P.K.G. and S.C.G. designed the simulations, H.J. carried out the simulations and C.S., H.J. and S.C.G. analysed the simulation data. J.J.K., K.V., C.S., H.J., S.C.G. and F.S. wrote most of the article. M.M.S. and S.M. contributed to manuscript revision.

Corresponding authors

Correspondence to Sharon C. Glotzer or Francesco Stellacci.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1926 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuna, J., Voïtchovsky, K., Singh, C. et al. The effect of nanometre-scale structure on interfacial energy. Nature Mater 8, 837–842 (2009). https://doi.org/10.1038/nmat2534

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2534

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing