Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nitrogen interaction with hydrogen-terminated silicon surfaces at the atomic scale

Abstract

Passivation of semiconductor surfaces is conveniently realized by terminating surface dangling bonds with a monovalent atom such as hydrogen using a simple wet chemical process (for example, HF treatment for silicon). However, the real potential of surface chemical passivation lies in the ability to replace surface hydrogen by multivalent atoms to form surfaces with tailored properties. Although some progress has been made to attach organic layers on top of H-terminated surfaces, it has been more challenging to understand and control the incorporation of multivalent atoms, such as oxygen and nitrogen, within the top surface layer of H-terminated surfaces. The difficulty arises partly because such processes are dominated by defect sites. Here, we report mechanistic pathways involved in the nitridation of H-terminated silicon surfaces using ammonia vapour. Surface infrared spectroscopy and first-principles calculations clearly show that the initial interaction is dominated by the details of the surface morphology (defect structure) and that NH and NH2 are precursors to N insertion into Si–Si bonds. For the dihydride-stepped Si(111) surface, a unique reaction pathway is identified leading to selective silazane step-edge formation at the lowest reaction temperatures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Initial nitridation of flat H/Si(111).
Figure 2: Configuration of stepped H/Si(111) surfaces.
Figure 3: Initial nitridation of monohydride-stepped H/Si(111).
Figure 4: Initial nitridation of dihydride-stepped H/Si(111).
Figure 5: Initial nitridation pathway for the dihydride-stepped H/Si(111) surface.

Similar content being viewed by others

References

  1. Brewer, R. T. et al. Ammonia pretreatment for high-κ dielectric growth on silicon. Appl. Phys. Lett. 85, 3830–3832 (2004).

    Article  CAS  Google Scholar 

  2. Wilk, G. D., Wallace, R. M. & Anthony, J. M. High-k gate dielectrics: Current status and materials properties considerations. J. Appl. Phys. 89, 5243–5275 (2001).

    Article  CAS  Google Scholar 

  3. Hanyaloglu, B. F. & Aydil, E. S. Low temperature plasma deposition of silicon nitride from silane and nitrogen plasmas. J. Vac. Sci. Technol. A 16, 2794–2803 (1998).

    Article  CAS  Google Scholar 

  4. Klaus, J. W., Ott, A. W., Dillon, A. C. & George, S. M. Atomic layer controlled growth of Si3N4 films using sequential surface reactions. Surf. Sci. 418, L14–L19 (1998).

    Article  CAS  Google Scholar 

  5. Wang, Y., Dai, M., Rivillon, S., Ho, M. T. & Chabal, Y. J. In situ infrared absorption spectroscopy for thin films growth by atomic layer deposition. Proc. SPIE 6325, 63250G (2006).

    Article  Google Scholar 

  6. Kirakosian, A., Lin, J.-L., Petrovykh, D. Y., Crain, J. N. & Himpsel, F. J. Functionalization of silicon step arrays I: Au passivation of stepped Si(111) templates. J. Appl. Phys. 90, 3286–3290 (2001).

    Article  CAS  Google Scholar 

  7. Tabe, M. & Yamamoto, T. Nanometer-scale local oxidation of silicon using silicon nitride islands formed in the early stages of nitridation. Appl. Phys. Lett. 69, 2222–2224 (1996).

    Article  CAS  Google Scholar 

  8. Himpsel, F. J., Kirakosian, A., Crain, J. N., Lin, J.-L. & Petrovykh, D. Y. Self-assembly of one-dimensional nanostructures at silicon surfaces. Solid State Commun. 117, 149–157 (2001).

    Article  CAS  Google Scholar 

  9. Gustavsson, J. et al. Surface modifications of silicon nitride for cellular biosensor applications. J. Mater. Sci.: Mater. Med. 19, 1839–1850 (2008).

    CAS  Google Scholar 

  10. Tlili, A., Jarbouib, M. A., Abdelghania, A., Fathallahb, D. M. & Maarefa, M. A. A novel silicon nitride biosensor for specific antibody–antigen interaction. Mater. Sci. Eng. C 25, 490–495 (2005).

    Article  Google Scholar 

  11. Sieval, A. B. et al. Amino-terminated organic monolayers on hydrogen-terminated silicon surfaces. Langmuir 17, 7554–7559 (2001).

    Article  CAS  Google Scholar 

  12. Himpsel, F. J., Kirakosian, A., Crain, J. N., Lin, J.-L. & Petrovykh, D. Y. Self-assembly of one-dimensional nanostructures at silicon surfaces. Solid State Commun. 117, 149–157 (2001).

    Article  CAS  Google Scholar 

  13. Strother, T., Cai, W., Zhao, X., Hamers, R. J. & Smith, L. M. Synthesis and characterization of DNA-modified silicon (111) surfaces. J. Am. Chem. Soc. 122, 1205–1209 (2000).

    Article  CAS  Google Scholar 

  14. Strother, T., Hamers, R. J. & Smith, L. M. Covalent attachment of oligodeoxyribonucleatoides to amine-modified Si(001) surfaces. Nucl. Acid Res. 28, 3535–3541 (2000).

    Article  CAS  Google Scholar 

  15. Tse, K.-Y. et al. Electrical properties of diamond surfaces functionalized with molecular monolayers. J. Phys. Chem. B 109, 8523–8532 (2005).

    Article  CAS  Google Scholar 

  16. Bischoff, J. L., Kubler, L. & Bolmont, D. Thermal nitridation of Si(100)-2×1 surface by NH3: XPS results. Surf. Sci. 209, 115–130 (1989).

    Article  CAS  Google Scholar 

  17. Bjorkquist, M., Gothelid, M., Grehk, T. M. & Karlsson, U. O. NH3 on Si(111)7×7: Dissociation and surface reaction. Phys. Rev. B 57, 2327–2333 (1998).

    Article  Google Scholar 

  18. Bjorkquist, M., Gothelid, M. & Karlsson, U. O. Nitride formation and dangling-bond passivation on Si(111)-(7×7) with NH3 . Surf. Sci. 394, L155–L161 (1997).

    Article  Google Scholar 

  19. Bowler, D. R. & Owen, J. H. G. Molecular interactions and decomposition pathways of NH3 on Si(001). Phys. Rev. B 75, 155310 (2007).

    Article  Google Scholar 

  20. Colaianni, M. L., Chen, P. J. & Yates, J. T. The stepwise dissociation of NH3 on the Si(111)-(7×7) surface: Low-temperature dissociative adsorption and thermal effects. J. Chem. Phys. 96, 7826–7837 (1992).

    Article  CAS  Google Scholar 

  21. Queeney, K. T., Chabal, Y. J. & Raghavachari, K. Role of interdimer interactions in NH3 dissociation on Si(100). Phys. Rev. Lett. 86, 1046–1049 (2001).

    Article  CAS  Google Scholar 

  22. Ishidzuka, S., Igari, Y., Takaoka, T. & Kusunoki, I. Nitridation of Si(100) surface with NH3 . Appl. Surf. Sci. 130–132, 107–111 (1997).

    Google Scholar 

  23. Boukherroub, R. Chemical reactivity of hydrogen-terminated crystalline silicon surfaces. Curr. Opin. Solid State Mater. Sci. 9, 66–72 (2005).

    Article  CAS  Google Scholar 

  24. Higashi, G. S., Chabal, Y. J., Trucks, G. W. & Raghavachari, K. Ideal hydrogen termination of the Si(111) surface. Appl. Phys. Lett. 56, 656–658 (1990).

    Article  CAS  Google Scholar 

  25. Dillon, A. C., Gupta, P., Robinson, M. B., Bracher, A. S. & George, S. M. Ammonia decomposition on silicon surfaces studied using transmission Fourier transform infrared spectroscopy. J. Vac. Sci. Technol. A 9, 2222–2230 (1991).

    Article  CAS  Google Scholar 

  26. Ho, M.-T., Wang, Y., Brewer, R. T., Wielunski, L. S. & Chabal, Y. J. In situ infrared spectroscopy of hafnium oxide growth on hydrogen-terminated silicon surfaces by atomic layer deposition. Appl. Phys. Lett. 87, 133103 (2005).

    Article  Google Scholar 

  27. Parsons, G. N. & Lucovsky, G. Silicon–hydrogen bond-stretching vibrations in hydrogenated amorphous silicon–nitrogen alloys. Phys. Rev. B 41, 1664–1667 (1990).

    Article  CAS  Google Scholar 

  28. Tsu, D. V., Lucovsky, G. & Davidson, B. N. Effects of the nearest neighbours and the alloy matrix on SiH stretching vibrations in the amorphous SiOr:H (0<r<2) alloy system. Phys. Rev. B 40, 1795–1805 (1989).

    Article  CAS  Google Scholar 

  29. Dupont, G., Caquineau, H., Despax, B., Berjoan, R. & Dollet, A. Structural properties of N-rich a-Si–N:H films with a low electron-trapping rate. J. Phys. D 30, 1064–1076 (1997).

    Article  CAS  Google Scholar 

  30. Lucovsky, G. & Tsu, D. V. Plasma enhanced chemical vapour deposition: Differences between direct and remote plasma excitation. J. Vac. Sci. Technol. A 5, 2231–2238 (1986).

    Article  Google Scholar 

  31. Tsu, D. V. & Lucovsky, G. Silicon nitride and silicon diimide grown by remote plasma enhanced chemical vapour deposition. J. Vac. Sci. Technol. A 4, 480–485 (1986).

    Article  CAS  Google Scholar 

  32. Tsu, D. V., Lucovsky, G. & Mantini, M. J. Local atomic structure in thin films of silicon nitride and silicon diimide produced by remote plasma-enhanced chemical-vapour deposition. Phys. Rev. B 33, 7069–7076 (1986).

    Article  CAS  Google Scholar 

  33. Verlaan, V. et al. Unambiguous determination of Fourier-transform infrared spectroscopy proportionality factors: The case of silicon nitride. Phys. Rev. B 73, 195333 (2006).

    Article  Google Scholar 

  34. Jakob, P. & Chabal, Y. J. Chemical etching of vicinal Si(111): Dependence of the surface structure and the hydrogen termination on the pH of the etching solutions. J. Chem. Phys. 95, 2897–2909 (1991).

    Article  CAS  Google Scholar 

  35. Ken, W. Cleaning of silicon surfaces. J. Electrochem. Soc. 137, 1887–1892 (1990).

    Article  Google Scholar 

  36. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  37. Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 113, 7756–7764 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation (Grant No. CHE-0415652). The authors would like to thank D. Michalak for insightful discussions and some aspects of stepped-sample preparation. Computational resources provided by Hewlett-Packard are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

M.D. carried out the bulk of the experiments with some guidance from Y.W. M.D.H. carried out the theoretical modelling. M.D.H. and J.K. participated in the redaction of the manuscript. Y.J.C. provided the initial motivation for the experiment, continuous guidance for experiments and analysis, and manuscript redaction.

Corresponding author

Correspondence to Yves J. Chabal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, M., Wang, Y., Kwon, J. et al. Nitrogen interaction with hydrogen-terminated silicon surfaces at the atomic scale. Nature Mater 8, 825–830 (2009). https://doi.org/10.1038/nmat2514

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2514

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing