Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Physical approaches to biomaterial design

Abstract

The development of biomaterials for drug delivery, tissue engineering and medical diagnostics has traditionally been based on new chemistries. However, there is growing recognition that the physical as well as the chemical properties of materials can regulate biological responses. Here, we review this transition with regard to selected physical properties including size, shape, mechanical properties, surface texture and compartmentalization. In each case, we present examples demonstrating the significance of these properties in biology. We also discuss synthesis methods and biological applications for designer biomaterials, which offer unique physical properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Examples of natural biological objects that have diverse physical properties.
Figure 2: Size-dependent processes of particle transport in the human body.
Figure 3: Examples of designer particles with different shapes.
Figure 4: Examples of surfaces with micro- or nanoscale heterogeneity.
Figure 5: Examples of multifunctional particles based on compartmentalization.

Similar content being viewed by others

References

  1. Peppas, N. A. & Langer, R. New challenges in biomaterials. Science 263, 1715–1720 (1994).

    Article  CAS  Google Scholar 

  2. Langer, R. & Tirrell, D. A. Designing materials for biology and medicine. Nature 428, 487–492 (2004).

    Article  CAS  Google Scholar 

  3. Karp, J. M. & Langer, R. Development and therapeutic applications of advanced biomaterials. Curr. Opin. Biotechnol. 18, 454–459 (2007).

    Article  CAS  Google Scholar 

  4. Mooney, D. J. & Mikos, A. G. Growing new organs. Sci. Am. 280, 60–65 (1999).

    Article  CAS  Google Scholar 

  5. Gref, R. et al. Biodegradable long-circulating polymeric nanospheres. Science 263, 1600–1603 (1994).

    Article  CAS  Google Scholar 

  6. Owens, D. E. III & Peppas, N. A. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 307, 93–102 (2006).

    Article  CAS  Google Scholar 

  7. Wang, M. D., Shin, D. M., Simons, J. W. & Nie, S. Nanotechnology for targeted cancer therapy. Expert Rev. Anticancer Ther. 7, 833–837 (2007).

    Article  CAS  Google Scholar 

  8. Blattman, J. N. & Greenberg, P. D. Cancer immunotherapy: a treatment for the masses. Science 305, 200–205 (2004).

    Article  CAS  Google Scholar 

  9. Monsonego, A. & Weiner, H. L. Immunotherapeutic approaches to Alzheimer's disease. Science 302, 834–838 (2003).

    Article  CAS  Google Scholar 

  10. Ruoslahti, E. & Pierschbacher, M. D. New perspectives in cell adhesion: RGD and integrins. Science 238, 491–497 (1987).

    Article  CAS  Google Scholar 

  11. Stevens, M. M. & George, J. H. Exploring and engineering the cell surface interface. Science 310, 1135–1138 (2005).

    Article  CAS  Google Scholar 

  12. Beningo, K. A., Dembo, M. & Wang, Y.-L. Responses of fibroblasts to anchorage of dorsal extracellular matrix receptors. Proc. Natl Acad. Sci. USA 101, 18024–18029 (2004).

    Article  CAS  Google Scholar 

  13. Silva, G. A. et al. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303, 1352–1355 (2004).

    Article  CAS  Google Scholar 

  14. Makino, H., Hasuda, H. & Ito, Y. Immobilization of leukemia inhibitory factor to culture murine embryonic stem cells. J. Biosci. Bioeng. 98, 374–379 (2004).

    Article  CAS  Google Scholar 

  15. Yang, S. H., Hsu, C. K., Wang, K. C., Hou, S. M. & Lin, F. H. Tricalcium phosphate and glutaraldehyde crosslinked gelatin incorporating bone morphogenetic protein-viable scaffold for bone tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater. 74, 468–475 (2005).

    Article  CAS  Google Scholar 

  16. Griffith, L. G. & Swartz, M. A. Capturing complex 3D tissue physiology in vitro. Nature Rev. Mol. Cell. Biol. 7, 211–224 (2006).

    Article  CAS  Google Scholar 

  17. Champion, J. A. & Mitragotri, S. Role of target geometry in phagocytosis. Proc. Natl Acad. Sci. USA 103, 4930–4934 (2006).

    Article  CAS  Google Scholar 

  18. Champion, J. A., Katare, Y. K. & Mitragotri, S. Making polymeric micro- and nanoparticles of complex shapes. Proc. Natl Acad. Sci. USA 104, 11901–11904 (2007).

    Article  CAS  Google Scholar 

  19. Rolland, J. P. et al. Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials. J. Am. Chem. Soc. 127, 10096–10100 (2005).

    Article  CAS  Google Scholar 

  20. Euliss, L. E., DuPont, J. A., Gratton, S. & DeSimone, J. Imparting size, shape, and composition control of materials for nanomedicine. Chem. Soc. Rev. 35, 1095–1104 (2006).

    Article  CAS  Google Scholar 

  21. Geng, Y. et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nature Nanotech. 2, 249–255 (2007).

    Article  CAS  Google Scholar 

  22. Roh, K. H., Martin, D. C. & Lahann, J. Biphasic Janus particles with nanoscale anisotropy. Nature Mater. 4, 759–763 (2005).

    Article  CAS  Google Scholar 

  23. Tao, S. L. & Desai, T. A. Micromachined devices: the impact of controlled geometry from cell-targeting to bioavailability. J. Control. Release 109, 127–138 (2005).

    Article  CAS  Google Scholar 

  24. Graziano, A. et al. Scaffold's surface geometry significantly affects human stem cell bone tissue engineering. J. Cell Physiol. 214, 166–172 (2008).

    Article  CAS  Google Scholar 

  25. Milner, K. R. & Siedlecki, C. A. Submicron poly(L-lactic acid) pillars affect fibroblast adhesion and proliferation. J. Biomed. Mater. Res. A 82, 80–91 (2007).

    Article  CAS  Google Scholar 

  26. Shen, H., Tan, J. & Saltzman, W. M. Surface-mediated gene transfer from nanocomposites of controlled texture. Nature Mater. 3, 569–574 (2004).

    Article  CAS  Google Scholar 

  27. Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M. & Ingber, D. E. Geometric control of cell life and death. Science 276, 1425–1428 (1997).

    Article  CAS  Google Scholar 

  28. Rehfeldt, F., Engler, A. J., Eckhardt, A., Ahmed, F. & Discher, D. E. Cell responses to the mechanochemical microenvironment: Implications for regenerative medicine and drug delivery. Adv. Drug Deliv. Rev. 59, 1329–1339 (2007).

    Article  CAS  Google Scholar 

  29. Young, K. D. The selective value of bacterial shape. Microbiol. Mol. Biol. Rev. 70, 660–703 (2006).

    Article  Google Scholar 

  30. Frojmovic, M. M. & Milton, J. G. Human platelet size, shape, and related functions in health and disease. Physiol. Rev. 62, 185–261 (1982).

    Article  CAS  Google Scholar 

  31. Rehfeldt, F., Engler, A. J., Eckhardt, A., Ahmed, F. & Discher, D. E. Cell responses to the mechanochemical microenvironment- Implications for regenerative medicine and drug delivery. Adv. Drug Deliv. Rev. 59, 1329–1339 (2007).

    Article  CAS  Google Scholar 

  32. Engler, A., Richert, L., Wong, J. Y., Picart, C. & Discher, D. Surface probe measurements of the elasticity of sectioned tissue, thin gels and polyelectrolyte multilayer films: correlations between substrate and cell adhesion. Surf. Sci. 570, 142–154 (2004).

    Article  CAS  Google Scholar 

  33. Beningo, K. A. & Wang, Y. L. Fc-receptor-mediated phagocytosis is regulated by mechanical properties of the target. J. Cell Sci. 115, 849–856 (2002).

    CAS  Google Scholar 

  34. Nakayama, K. Membrane traffic: editorial overview. J. Biochem. 136, 751–753 (2004).

    Article  CAS  Google Scholar 

  35. Champion, J. A. & Mitragotri, S. Role of particle size in phagocytosis of polymeric microspheres. Pharm. Res. 25, 1815–1821 (2008).

    Article  CAS  Google Scholar 

  36. Ingber, D. E. Cellular mechanotransduction: putting all the pieces together again. FASEB J. 20, 811–827 (2006).

    Article  CAS  Google Scholar 

  37. Bershadsky, A. et al. Assembly and mechanosensory function of focal adhesions: experiments and models. Eur. J. Cell Biol. 85, 165–173 (2006).

    Article  CAS  Google Scholar 

  38. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    Article  CAS  Google Scholar 

  39. Engler, A. et al. Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J. Cell Biol. 166, 877–887 (2004).

    Article  CAS  Google Scholar 

  40. Johnson, C. P., Tang, H.-Y., Carag, C., Speicher, D. W. & Discher, D. Forced unfolding of proteins within cells. Science 317, 663–664 (2007).

    Article  CAS  Google Scholar 

  41. Vogel, V. & Sheetz, M. Local force and geometry sensing regulate cell functions. Nature Rev. Mol. Cell Biol. 7, 265–275 (2006).

    Article  CAS  Google Scholar 

  42. Ingber, D. E. Cellular mechanotransduction: putting all the pieces together again. FASEB J. 20, 811–27 (2006).

    Article  CAS  Google Scholar 

  43. Discher, D. E., Janmey, P. & Wang, Y. L. Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143 (2005).

    Article  CAS  Google Scholar 

  44. Ben-Zeíev, A. Virus replication in infected epithelial cells is coupled to cell shape-responsive metabolic controls. J. Cell Physiol. 114, 145–152 (1983).

    Article  Google Scholar 

  45. Griffin, M. A., Sen, S., Sweeney, H. L. & Discher, D. E. Adhesion-contractile balance in myocyte differentiation. J. Cell Sci. 117, 5855–5863 (2004).

    Article  CAS  Google Scholar 

  46. Kong, H. J. et al. Non-viral gene delivery regulated by stiffness of cell adhesion substrates. Nature Mater. 4, 460–464 (2005).

    Article  CAS  Google Scholar 

  47. Kolb, H. C., Finn, M. G. & Sharpless K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004–2021 (2001).

    Article  CAS  Google Scholar 

  48. Nandivada, H., Chen, H. Y., Bondarenko, L. & Lahann, J. Reactive polymer coatings that click. Angew. Chem. Int. Ed. 45, 3360–3363 (2006).

    Article  CAS  Google Scholar 

  49. Ghosh, K. & Ingber, D. E. Micromechanical control of cell and tissue development: implications for tissue engineering. Adv. Drug Deliv. Rev. 59, 1306–1318 (2007).

    Article  CAS  Google Scholar 

  50. Xia, Y. N. & Whitesides, G. M. Soft lithography. Angew. Chem. Int. Ed. 37, 551–575 (1998).

    Article  Google Scholar 

  51. Beningo, K. A. & Wang, Y. L. Flexible substrata for the detection of cellular traction forces. Trends Cell Biol. 12, 79–84 (2002).

    Article  CAS  Google Scholar 

  52. Clark, H. A., Hoyer, M., Philbert, M. A. & Kopelman, R. Optical nanosensors for chemical analysis inside single living cells. 1. Fabrication, characterization, and methods for intracellular delivery of pebble sensors. Anal. Chem. 71, 4831–4836 (1999).

    Article  CAS  Google Scholar 

  53. Tao, S. L., Popat, K. & Desai, T. A. Off-water fabrication and surface modification of asymmetric 3D SU-8 microparticles. Nature Protocols 1, 3153–3158 (2006).

    Article  CAS  Google Scholar 

  54. Napier, M. E. & DeSimone, J. M. Nanoparticle drug delivery platform. Polym. Rev. 47, 321–327 (2007).

    Article  CAS  Google Scholar 

  55. Moghimi, S. M., Hunter, A. C. & Murray, J. C. Nanomedicine: current status and future prospects. FASEB J. 19, 311–330 (2005).

    Article  CAS  Google Scholar 

  56. Berkland, C., Kim, K. & Pack, D. W. Fabrication of PLG microspheres with precisely controlled and monodisperse size distributions. J Control. Release 73, 59–74 (2001).

    Article  CAS  Google Scholar 

  57. Alexis, F., Pridgen, E., Molnar, L. K. & Farokhzad, O. C. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharmacol. 5, 505–515 (2008).

    Article  CAS  Google Scholar 

  58. Kohane, D. S. Microparticles and nanoparticles for drug delivery. Biotechnol. Bioeng. 96, 203–209 (2007).

    Article  CAS  Google Scholar 

  59. Singh, M., Chakrapani, A. & O'Hagan, D. Nanoparticles and microparticles as vaccine-delivery systems. Expert Rev. Vaccines 6, 797–808 (2007).

    Article  CAS  Google Scholar 

  60. Ravi Kumar, M. N. Nano and microparticles as controlled drug delivery devices. J. Pharm. Pharm. Sci. 3, 234–258 (2000).

    CAS  Google Scholar 

  61. Gao, H., Shi, W. & Freund, L. B. Mechanics of receptor-mediated endocytosis. Proc. Natl Acad. Sci USA 102, 9469–9474 (2005).

    Article  CAS  Google Scholar 

  62. Goldsmith, H. L. & Turitto, V. T. Rheological aspects of thrombosis and hemostasis: basic principles and applications. ICTH Report: Subcommittee on rheology of the international committee on thrombosis and hemostasis. Thromb. Haemost. 55, 415–435 (1986).

    CAS  Google Scholar 

  63. Patil, V. R. S., Campbell, C. J., Yun, Y. H., Slack, S. M. & Goetz, D. J. Particle diameter influences adhesion under flow. Biophys. J. 80, 1733–1743 (2001).

    Article  Google Scholar 

  64. Lamprecht, A., Schafer, U. & Lehr, C. M. Size-dependent bioadhesion of micro- and nanoparticulate carriers to the inflamed colonic mucosa. Pharm. Res. 18, 788–793 (2001).

    Article  CAS  Google Scholar 

  65. Kwiatkowska, K. & Sobota, A. Signaling pathyways in phagocytosis. BioEssays. 21, 422–431 (1999).

    Article  CAS  Google Scholar 

  66. Tabata, Y. & Ikada, Y. Phagocytosis of polymer microspheres by macrophages. Adv. Polym. Sci. 94, 107–141 (1990).

    Article  CAS  Google Scholar 

  67. Illum, L. et al. Blood clearance and organ deposition of intravenously administered colloidal particles: the effects of particle-size, nature and shape. Int. J. Pharm. 12, 135–146 (1982).

    Article  CAS  Google Scholar 

  68. Stolnik, S., Illum, L. & Davis, S. S. Long circulating microparticulate drug carriers. Adv. Drug Delivery Rev. 16, 195–214 (1995).

    Article  CAS  Google Scholar 

  69. Rejman, J., Oberle, V. Zuhorn, I. S. & Hoekstra, D. Size-dependent internalization of particles via the pathways of clathrin-and caveolae-mediated endocytosis. Biochem. J. 377, 159–169 (2004).

    Article  CAS  Google Scholar 

  70. May, R. C. & Machesky, L. M. Phagocytosis and the actin cytoskeleton. J. Cell Sci. 114, 1061–1077 (2001).

    CAS  Google Scholar 

  71. Moghimi, S. M., Hunter, A. C. & Murray, J. C. Long-circulating and target-specific nanoparticles: Theory to practice. Pharmacol. Rev. 53, 283–318 (2001).

    CAS  Google Scholar 

  72. Osaki, F., Kanamori, T., Sando, S., Sera, T. & Aoyama, Y. A quantum dot conjugated sugar ball and its cellular uptake. On the size effects of endocytosis in the subviral region. J. Am. Chem. Soc. 126, 6520–6521 (2004).

    Article  CAS  Google Scholar 

  73. Champion, J. A., Walker, A. & Mitragotri, S. Role of particle size in phagocytosis of polymeric microspheres. Pharm. Res. 25, 1815–1821 (2008).

    Article  CAS  Google Scholar 

  74. Gratton, S. E. A. et al. Nanofabricated particles for engineering drug therapies: A preliminary biodistribution study of PRINT nanoparticles. J. Control. Rel. 121, 10–18 (2007).

    Article  CAS  Google Scholar 

  75. Edwards, D. A. et al. Large porous particles for pulmonary drug delivery. Science 276, 1868–1871 (1997).

    Article  CAS  Google Scholar 

  76. Champion, J. A., Katare, Y. K. & Mitragotri, S. Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. J. Control. Rel. 121, 3–9 (2007).

    Article  CAS  Google Scholar 

  77. Mitragotri, S. In drug delivery, shape does matter. Pharm. Res. 10.1007/s11095-008-9740-y (2008).

  78. Decuzzi, P. & Ferrari, M. The receptor-mediated endocytosis of non-spherical particles. Biophys. J. 94, 3790–3797 (2008).

    Article  CAS  Google Scholar 

  79. Decuzzi, P. & Ferrari, M. The adhesive strength of non-spherical particles mediated by specific interactions. Biomater. 27, 5307–5314 (2006).

    Article  CAS  Google Scholar 

  80. Decuzzi, P., Pasqualini, R., Arap, W. & Ferrari, M. Intravascular delivery of particulate systems: does geometry really matter? Pharm. Res. 10.1007/s11095-008-9697-x (2008).

  81. Champion, J. A. & Mitragotri, S. Shape induced inhibition of phagocytosis of polymer particles. Pharm. Res. 10.1007/s11095-008-9626-z (2008).

  82. Gratton, S. E. et al. The effect of particle design on cellular internalization pathways. Proc. Natl Acad. Sci. USA 105, 11613–11618 (2008).

    Article  CAS  Google Scholar 

  83. Chithrani, B. D., Ghazani, A. A. & Chan, W. C. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 6, 662–668 (2006).

    Article  CAS  Google Scholar 

  84. Muro, S. et al. Control of endothelial targeting and intracellular delivery of therapeutic enzymes by modulating the size and shape of ICAM-1-targeted carriers. Mol. Ther. 16, 1450–1458 (2008).

    Article  CAS  Google Scholar 

  85. Dickerson, E. B. et al. Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett. 269, 57–66 (2008).

    Article  CAS  Google Scholar 

  86. Zavaleta, C. et al. Noninvasive Raman spectroscopy in living mice for evaluation of tumor targeting with carbon nanotubes. Nano Lett. 8, 2800–2805 (2008).

    Article  CAS  Google Scholar 

  87. Glotzer, S. C. & Solomon, M. J. Anisotropy of building blocks and their assembly into complex structures. Nature Mater. 6, 557–562 (2007).

    Article  Google Scholar 

  88. Mohraz, A. & Solomon, M. J. Direct visualization of colloidal rod assembly by confocal microscopy. Langmuir 21, 5298–5306 (2005).

    Article  CAS  Google Scholar 

  89. Ho, C. C., Keller, A., Odell, J. A. & Ottewill, R. H. Preparation of monodisperse ellipsoidal polystyrene particles. Colloid Polym. Sci. 271, 469–479 (1993).

    Article  CAS  Google Scholar 

  90. Dendukuri, D., Pregibon, D. C., Collins, J., Hatton, T. A. & Doyle, P. S. Continuous-flow lithography for high-throughput microparticle synthesis. Nature Mater. 5, 365–369 (2006).

    Article  CAS  Google Scholar 

  91. Manoharan, V. N., Elsesser, M. T. & Pine, D. J. Dense packing and symmetry in small clusters of microspheres. Science 301, 483–487 (2003).

    Article  CAS  Google Scholar 

  92. Yin, Y. D. & Xia, Y. N. Self-assembly of monodispersed spherical colloids into complex aggregates with well-defined sizes, shapes, and structures. Adv. Mater. 13, 267–271 (2001).

    Article  CAS  Google Scholar 

  93. Sung, K. E. et al. Programmable fluidic production of microparticles with configurable anisotropy. J. Am. Chem. Soc. 130, 1335–1340 (2008).

    Article  CAS  Google Scholar 

  94. Dalby, M., Riehle, M. O., Sutherland, D. S., Agheli, H. & Curtis, A. S. Use of nanotopography to study mechanotransduction in fibroblasts—methods and perspectives. Eur. J. Cell Biol. 83, 159–169 (2004).

    Article  Google Scholar 

  95. Liu, W. F. & Chen, C. S. Cellular and multicellular form and function. Adv. Drug Deliv. Rev. 59, 1319–1328 (2007).

    Article  CAS  Google Scholar 

  96. Cao, L. & Mooney. D. Spatiotemporal control over growth factor signaling for therapeutic neovascularization. Adv. Drug Deliv. Rev. 59, 1340–1350 (2007).

    Article  CAS  Google Scholar 

  97. Kane, R. S., Takayama, S. Ostuni, E. Ingber, D. E. & Whitesides G. M. Patterning proteins and cells using soft lithography. Biomater. 20, 2363–2376 (1999).

    Article  CAS  Google Scholar 

  98. Senaratne, W., Andruzzi, L. & Ober, C. K. Self-assembled monolayers and polymer brushes in biotechnology, current applications and future perspectives. Biomacromol. 6, 2427–2448 (2005).

    Article  CAS  Google Scholar 

  99. Dalby, M. J. et al. Fibroblast reaction to island topography: changes in cytoskeleton and morphology with time. Biomater. 24, 927–935 (2003).

    Article  CAS  Google Scholar 

  100. Kong, H. J., Hsiong, S. & Mooney, D. J. Nanoscale cell adhesion ligand presentation regulates nonviral gene delivery and expression. Nano Lett. 7, 161–166 (2007).

    Article  CAS  Google Scholar 

  101. Lehnert, D. et al. Cell behaviour on micropatterned substrata: limits of extracellular matrix geometry for spreading and adhesion. J. Cell Sci. 117, 41–52 (2004).

    Article  CAS  Google Scholar 

  102. Sanders, J. E., Bale, S. D. & Neumann, T. Tissue response to microfibers of different polymers: polyester, polyethylene, polylactic acid, and polyurethane. J. Biomed. Mater. Res. 62, 222–227 (2002).

    Article  CAS  Google Scholar 

  103. Yang, M. T., Sniadecki, N. J. & Chen, C. S. Geometric considerations of micro- to nanoscale elastomeric postarrays to study cellular traction forces. Adv. Mater. 19, 3119–3123 (2007).

    Article  CAS  Google Scholar 

  104. Rice, J. M. et al. Quantitative assessment of the response of primary derived human osteoblasts and macrophages to a range of nanotopography surfaces in a single culture model in vitro. Biomater. 24, 4799–4818 (2003).

    Article  CAS  Google Scholar 

  105. Lee, H. L. et al. Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomater. 26, 1261–1270 (2005).

    Article  CAS  Google Scholar 

  106. McBeath, R., Pirone, D. M. Nelson, C. M. Bhadriraju, K. & Chen, C. S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6, 483–495 (2004).

    Article  CAS  Google Scholar 

  107. Dalby, M. J. et al. Attempted endocytosis of nano-environment produced by colloidal lithography by human fibroblasts. Exp. Cell Res. 295, 387–394 (2004).

    Article  CAS  Google Scholar 

  108. Perro, A. et al. Towards large amounts of Janus nanoparticles through a protection-deprotection route. Chem. Commun. 44, 5542–5543 (2005).

    Article  CAS  Google Scholar 

  109. Bao, Z. N. et al. Toward controllable self-assembly of microstructures: Selective functionalization and fabrication of patterned spheres. Chem. Mater. 14, 24–26 (2002).

    Article  CAS  Google Scholar 

  110. Paunov, V. N. & Cayre, O. J. Supraparticles and “Janus” particles fabricated by replication of particle monolayers at liquid surfaces using a gel trapping technique. Adv. Mater. 16, 788–791 (2004).

    Article  CAS  Google Scholar 

  111. Cayre, O., Paunov, V. N. & Velev, O. D. Fabrication of dipolar colloid particles by microcontact printing. Chem. Commun. 18, 2296–2297 (2003).

    Article  CAS  Google Scholar 

  112. Salem, A. K., Searson, P. C. & Leong, K. W. Multifunctional nanorods for gene delivery. Nature Mater. 2, 668–671 (2003).

    Article  CAS  Google Scholar 

  113. Pregibon, D. C., Toner, M. & Doyle, P. S. Multifunctional encoded particles for high-throughput biomolecule analysis. Science 315, 1393–1396 (2007).

    Article  CAS  Google Scholar 

  114. Chen, H. Y., Rouillard, J. M., Gulari, E. & Lahann, J. Colloids with high-definition surface structures. Proc. Natl Acad. Sci. USA 104, 11173–11178 (2007).

    Article  CAS  Google Scholar 

  115. Chhabra, R. et al. Spatially addressable multiprotein nanoarrays templated by aptamer-tagged DNA nanoarchitectures. J. Am. Chem. Soc. 129, 10304–10305 (2007).

    Article  CAS  Google Scholar 

  116. Yoshida, M., Roh, K. H. & Lahann, J. Short-term biocompatibility of biphasic nanocolloids with potential use as anisotropic imaging probes. Biomater. 28, 2446–2456 (2007).

    Article  CAS  Google Scholar 

  117. Jackson, A. M., Myerson, J. W. & Stellacci, F. Spontaneous assembly of subnanometre-ordered domains in the ligand shell of monolayer-protected nanoparticles. Nature Mater. 3, 330–336 (2004).

    Article  CAS  Google Scholar 

  118. Verma, A. et al. Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nature Mater. 7, 588–595 (2008).

    Article  CAS  Google Scholar 

  119. Sengupta, S. et al. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature 436, 568–572 (2005).

    Article  CAS  Google Scholar 

  120. Loscertales, I. G. et al. Micro/nano encapsulation via electrified coaxial liquid jets. Science 295, 1695–1698 (2002).

    Article  CAS  Google Scholar 

  121. Picart, C. & Discher, D. Materials science: Embedded shells decalcified. Nature 448, 879–880 (2007).

    Article  CAS  Google Scholar 

  122. Wang, Y., Gao, S., Ye, W. H., Yoon, H. S. & Yang, Y. Y. Co-delivery of drugs and DNA from cationic core-shell nanoparticles self-assembled from a biodegradable copolymer. Nature Mater. 5, 791–796 (2006).

    Article  CAS  Google Scholar 

  123. Basinska, T., Slomkowski, S. & Delamar, M. Synthesis and characterization of polystyrene core/polycation shell latexes. J. Bioact. Compat. Polym. 8, 205–219 (1993).

    Article  CAS  Google Scholar 

  124. Caruso, F., Caruso, R. A. & Möhwald, H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 282, 1111–1114 (1998).

    Article  CAS  Google Scholar 

  125. Carter, S. R. & Rimmer, S. Surface molecularly imprinted polymer core-shell particles. Adv. Funct. Mater. 14, 553–561 (2004).

    Article  CAS  Google Scholar 

  126. Zhang, Y. W., Wang, Z. X., Wang, Y. S., Zhao, J. X. & Wu, C. X. Facile preparation of pH-responsive gelatin-based core-shell polymeric nanoparticles at high concentrations via template polymerization. Polymer 48, 5639–5645 (2007).

    Article  CAS  Google Scholar 

  127. Luo, X. L., Killard, A. J., Morrin, A. & Smyth, M. R. Electrochemical preparation of distinct polyaniline nanostructures by surface charge control of polystyrene nanoparticle templates. Chem. Commun. 30, 3207–3209 (2007).

    Article  CAS  Google Scholar 

  128. Kubowicz, S. et al. Multicompartment micelles formed by self-assembly of linear ABC triblock copolymers in aqueous medium. Angew. Chem. Int. Ed. 44, 5262–5265 (2005).

    Article  CAS  Google Scholar 

  129. Li, Z., Kesselman, E., Talmon, Y., Hillmyer, M. A. & Lodge, T. P. Multicompartment micelles from ABC miktoarm stars in water. Science 306, 98–101 (2004).

    Article  CAS  Google Scholar 

  130. Kisak, E. T., Coldren, B., Evans, C. A., Boyer, C. & Zasadzinski, J. A. The vesosome-multicompartment drug delivery vehicle. Curr. Med. Chem. 11, 199–219 (2004).

    Article  CAS  Google Scholar 

  131. Utada, A. S. et al. Monodisperse double emulsions generated from a microcapillary device. Science 308, 537–541 (2005).

    Article  CAS  Google Scholar 

  132. Ferrari, M. Cancer nanotechnology: Opportunities and challenges. Nature Rev. Cancer 5, 161–171 (2005).

    Article  CAS  Google Scholar 

  133. Yoshida, M. & Lahann, J. Smart nanomaterials. ACS Nano 6, 1101–1107 (2008).

    Article  CAS  Google Scholar 

  134. Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221–227 (1999).

    Article  CAS  Google Scholar 

  135. du Roure, O. et al. Force mapping in epithelial cell migration. Proc. Natl Acad. Sci. USA 102, 2390–2395 (2005).

    Article  CAS  Google Scholar 

  136. Cayre, O., Paunov, V. N. & Velev, O. D. Fabrication of asymmetrically coated colloid particles by microcontact printing techniques. J. Mater. Chem. 13, 2445–2450 (2003).

    Article  CAS  Google Scholar 

  137. Kisak, E. T., Coldren, B. & Zasadzinski, J. A. Nanocompartments enclosing vesicles colloids, and macromolecules via interdigitated lipid bilayers. Langmuir 18, 284–288 (2002).

    Article  CAS  Google Scholar 

  138. Berkland, C., Pollauf, E., Varde N., Pack, D. W. & Kim, K. K. Monodisperse liquid-filled biodegradable microcapsules. Pharm. Res. 24, 1007–1013 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the National Institute of Health Program of Excellence in Nanotechnology (1VO1 HL080718), the Department of Defense (Idea award) and the NSF (Career award DMR-0449462). We thank A. Arora and N. Doshi for help in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitragotri, S., Lahann, J. Physical approaches to biomaterial design. Nature Mater 8, 15–23 (2009). https://doi.org/10.1038/nmat2344

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2344

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing