Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regular arrays of highly ordered ferroelectric polymer nanostructures for non-volatile low-voltage memories

Abstract

Ferroelectric nanostructures are attracting tremendous interest because they offer a promising route to novel integrated electronic devices such as non-volatile memories and probe-based mass data storage. Here, we demonstrate that high-density arrays of nanostructures of a ferroelectric polymer can be easily fabricated by a simple nano-embossing protocol, with integration densities larger than 33 Gbits inch−2. The orientation of the polarization axis, about which the dipole moment rotates, is simultaneously aligned in plane over the whole patterned region. Internal structural defects are significantly eliminated in the nanostructures. The improved crystal orientation and quality enable well-defined uniform switching behaviour from cell to cell. Each nanocell shows a narrow and almost ideal square-shaped hysteresis curve, with low energy losses and a coercive field of 10 MV m−1, well below previously reported bulk values. These results pave the way to the fabrication of soft plastic memories compatible with all-organic electronics and low-power information technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fabrication by nano-embossing of high-density arrays of crystalline nanostructures of a ferroelectric polymer.
Figure 2: Microstructure of nano-imprinted P(VDF-TrFE).
Figure 3: Ferroelectric properties of the P(VDF-TrFE) nanostructures.

Similar content being viewed by others

References

  1. Scott, J. F. Applications of modern ferroelectrics. Science 315, 954–959 (2007).

    Article  CAS  Google Scholar 

  2. Ahn, C. H., Rabe, K. M. & Triscone, J.-M. Ferroelectricity at the nanoscale: Local polarization in oxide thin films and heterostructures. Science 303, 488–491 (2004).

    Article  CAS  Google Scholar 

  3. Junquera, J. & Ghosez, P. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422, 506–509 (2003).

    Article  CAS  Google Scholar 

  4. Naumov, I. I., Bellaiche, L. & Fu, H. Unusual phase transitions in ferroelectric nanodisks and nanorods. Nature 432, 737–740 (2004).

    Article  CAS  Google Scholar 

  5. Bune, A. V. et al. Two-dimensional ferroelectric films. Nature 391, 874–877 (1998).

    Article  CAS  Google Scholar 

  6. Fong, D. D. et al. Ferroelectricity in ultrathin perovskite films. Science 304, 1650–1653 (2004).

    Article  CAS  Google Scholar 

  7. Lichtensteiger, C., Triscone, J.-M., Junquera, J. & Ghosez, P. Ferroelectricity and tetragonality in ultrathin PbTiO3 films. Phys. Rev. Lett. 94, 047603 (2005).

    Article  Google Scholar 

  8. Rabe, K. M., Ahn, C. H. & Triscone, J.-M. Physics of Ferroelectrics: A Modern Perspective (Springer, 2007).

    Google Scholar 

  9. Gruverman, A. & Kholkin, A. Nanoscale ferroelectrics: Processing, characterization and future trends. Rep. Prog. Phys. 69, 2443–2474 (2006).

    Article  CAS  Google Scholar 

  10. Schilling, A., Bowman, R. M., Catalan, G., Scott, J. F. & Gregg, J. M. Morphological control of polar orientation in single-crystal ferroelectric nanowires. Nano Lett. 7, 3787–3791 (2007).

    Article  CAS  Google Scholar 

  11. Alexe, M., Harnagea, C., Hesse, D. & Gösele, U. Patterning and switching of nanosize ferroelectric memory cells. Appl. Phys. Lett. 75, 1793–1795 (1999).

    Article  CAS  Google Scholar 

  12. Ganpule, C. S. et al. Scaling of ferroelectric and piezoelectric properties in Pt/SrBi2Ta2O9/Pt. Appl. Phys. Lett. 75, 3874–3876 (1999).

    Article  CAS  Google Scholar 

  13. Alexe, M. et al. Switching properties of self-assembled ferroelectric memory cells. Appl. Phys. Lett. 75, 1158–1160 (1999).

    Article  CAS  Google Scholar 

  14. Dawber, M., Szafraniak, I., Alexe, M. & Scott, J. F. Self-patterning of arrays of ferroelectric capacitors: Description by theory of substrate mediated strain interactions. J. Phys. Condens. Matter. 15, L667–L671 (2003).

    Article  CAS  Google Scholar 

  15. Bai, M. & Ducharme, S. Ferroelectric nanomesa formation from polymer Langmuir–Blodgett films. Appl. Phys. Lett. 85, 3528–3530 (2004).

    Article  CAS  Google Scholar 

  16. Malin, L., Stolichnov, I. & Setter, N. Ferroelectric polymer gate on AlGaN/GaN heterostructures. J. Appl. Phys. 102, 114101 (2007).

    Article  Google Scholar 

  17. Naber, R. C. et al. High-performance solution-processed polymer ferroelectric field-effect transistors. Nature Mater. 4, 243–248 (2005).

    Article  CAS  Google Scholar 

  18. Furukawa, T. Ferroelectric properties of vinylidene fluoride copolymers. Phase Transit. 18, 143–211 (1989).

    CAS  Google Scholar 

  19. Tashiro, K. & Kobayashi, M. Structural study of the ferroelectric phase transition of vinylidene fluoride-trifluoroethylene copolymers: 4. Poling effect on structure and phase transition. Polymer 27, 667–676 (1986).

    Article  CAS  Google Scholar 

  20. Baltá Calleja, F. J. et al. Structure and properties of ferroelectric copolymers of poly(vinylidene fluoride). Adv. Polym. Sci. 108, 1–48 (1993).

    Article  Google Scholar 

  21. Lovinger, A. J. Ferroelectric polymers. Science 220, 1115–1121 (1983).

    Article  CAS  Google Scholar 

  22. Naber, R. C., Blom, P. W., Marsman, A. W. & de Leeuw, D. M. Low voltage switching of a spin cast ferroelectric polymer. Appl. Phys. Lett. 85, 2032–2034 (2004).

    Article  CAS  Google Scholar 

  23. Xu, H., Zhong, J., Liu, X., Chen, J. & Shen, D. Ferroelectric and switching behavior of poly(vinylidene fluoride-trifluoroethylene) copolymer ultrathin films with polypyrrole interface. Appl. Phys. Lett. 90, 092903 (2007).

    Article  Google Scholar 

  24. Gerber, A. et al. Low-voltage operation of metal-ferroelectric-insulator- semiconductor diodes incorporating a ferroelectric polyvinylidene fluoride copolymer Langmuir–Blodgett film. J. Appl. Phys. 100, 024110 (2006).

    Article  Google Scholar 

  25. Chou, S. Y., Krauss, P. R. & Renstrom, P. J. Imprint lithography with 25-nanometer resolution. Science 272, 85–87 (1996).

    Article  CAS  Google Scholar 

  26. Zhang, L., Ducharme, S. & Li, J. Microimprinting and ferroelectric properties of poly(vinylidene fluoride-trifluoroethylene) copolymer films. Appl. Phys. Lett. 91, 172906 (2007).

    Article  Google Scholar 

  27. Kang, S. J. et al. Localized pressure-induced ferroelectric pattern arrays of semicrystalline poly(vinylidene fluoride) by microimprinting. Adv. Mater. 19, 581–586 (2007).

    Article  CAS  Google Scholar 

  28. Harnagea, C. et al. Mesoscopic ferroelectric cell arrays prepared by imprint lithography. Appl. Phys. Lett. 83, 1827–1829 (2003).

    Article  CAS  Google Scholar 

  29. Hu, Z., Baralia, G., Bayot, V., Gohy, J.-F. & Jonas, A. M. Nanoscale control of polymer crystallization by nanoimprint lithography. Nano Lett. 5, 1738–1743 (2005).

    Article  CAS  Google Scholar 

  30. Givargizov, E. I. in Handbook of Crystal Growth Vol. 3: Thin Films and Epitaxy (ed. Hurle, D. T. J.) (Elsevier Science, 1994).

    Google Scholar 

  31. Nguyen, T.-Q., Wu, J., Doan, V., Schwartz, B. J. & Tolbert, S. H. Control of energy transfer in oriented conjugated polymer-mesoporous silica composites. Science 288, 652–656 (2000).

    Article  CAS  Google Scholar 

  32. Hu, Z. et al. High-throughput fabrication of organic nanowire devices with preferential internal alignment and improved performance. Nano Lett. 7, 3639–-3644 (2007).

    Article  CAS  Google Scholar 

  33. Park, Y. J. et al. Molecular and crystalline microstructure of ferroelectric poly(vinylidene fluoride-co-trifluoroethylene) ultrathin films on bare and self-assembled monolayer-modified Au substrates. Macromolecules 41, 109–119 (2008).

    Article  CAS  Google Scholar 

  34. Kimura, K. et al. Orientation control of ferroelectric polymer molecules using contact-mode AFM. Eur. Polym. J. 40, 933–938 (2004).

    Article  CAS  Google Scholar 

  35. Bellet-Amalric, E. & Legrand, J. F. Crystalline structures and phase transition of the ferroelectric P(VDF-TrFE) copolymers, a neutron diffraction study. Eur. Phys. J. B 3, 225–236 (1998).

    Article  CAS  Google Scholar 

  36. Kholkin, A. L., Kalinin, S. V., Roelofs, A. & Gruverman, A. in Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale (eds Kalinin, S. V. & Gruverman, A.) (Springer, 2007).

    Google Scholar 

  37. Jesse, S., Baddorf, A. P. & Kalinin, S. V. Switching spectroscopy piezoresponse force microscopy of ferroelectric materials. Appl. Phys. Lett. 88, 062908 (2006).

    Article  Google Scholar 

  38. Bystrov, V. S. et al. Nanoscale polarization patterning of ferroelectric Langmuir–Blodgett P(VDF-TrFE) films. J. Phys. D: Appl. Phys. 40, 4571–4577 (2007).

    Article  CAS  Google Scholar 

  39. Cai, L. et al. Surface structure of ultrathin copolymer films of ferroelectric vinylidene fluoride (70%) with trifluoroethylene (30%) on graphite. Phys. Rev. B 70, 155411 (2004).

    Article  Google Scholar 

  40. Duan, C.-G. et al. Simulations of ferroelectric polymer film polarization: The role of dipole interactions. Phys. Rev. B 69, 235106 (2004).

    Article  Google Scholar 

  41. Padilla, J., Zhong, W. & Vanderbilt, D. First-principles investigation of 180 domain walls in BaTiO3 . Phys. Rev. B 53, R5969–R5973 (1996).

    Article  CAS  Google Scholar 

  42. Meyer, B. & Vanderbilt, D. Ab initio study of ferroelectric domain walls in PbTiO3 . Phys. Rev. B 65, 104111 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to P. Ghosez for discussions on ferroelectric materials. Financial support was provided by the Fondation Louvain (Fonds de Recherche Solvay), the Communauté Française de Belgique (ARC 06-11/339), the Wallonia Region (Nanotic excellence program) and the Belgian Federal Science Policy (IAP-PAI P6/27). B.N. is a Senior Research Associate of the F.R.S.-FNRS.

Author information

Authors and Affiliations

Authors

Contributions

Z.H. designed and carried out the experiments, participated in the data analysis and wrote the paper. M.T. provided support for the PFM measurements. B.N. provided support for the interpretation of AFM experiments. A.M.J. planned the project, contributed to the experiment design and data analysis, and wrote the paper.

Corresponding author

Correspondence to Alain M. Jonas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Z., Tian, M., Nysten, B. et al. Regular arrays of highly ordered ferroelectric polymer nanostructures for non-volatile low-voltage memories. Nature Mater 8, 62–67 (2009). https://doi.org/10.1038/nmat2339

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2339

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing