Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Vertically oriented hexagonal mesoporous films formed through nanometre-scale epitaxy

Abstract

Polymer- and surfactant-templated mesoporous inorganic materials offer a unique combination of controllable nanoscale architecture, materials variation and low-cost solution processing1,2,3,4,5. Inorganic materials can be produced with a range of periodic pore structures, with feature size ranging from 2 to 30 nm, and from a diverse set of materials1,2,6,7,8,9,10. Unfortunately in thin-film form, the pores of the ubiquitous hexagonal honeycomb phase tend to lie in the plane of the substrate11 making these materials unsuitable for applications where diffusion into the pores is required. Here, we show that nanometre-scale epitaxy on a patterned substrate can be used to form vertically oriented pores in honeycomb-structured films. We use the surface of cubic mesoporous films to form the pattern; as such, our method does not sacrifice the simple processing advantages of a self-assembled system. A precise lattice match between the hexagonal and cubic films is needed for vertical orientation, a condition that can be achieved using mixed templates or selective pore swelling. Pore orientation is characterized by a combination of microscopy and diffraction. Here, we present alignment data on oriented nanopores in the 10–15 nm range, but the method should be applicable across the 2–30 nm pore size range of these self-organized materials.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of the patterned substrate.
Figure 2: Characterization of vertically aligned nanoporous silica films.
Figure 3: Tapping-mode AFM images of mesoporous silica with both vertical and horizontal pores.
Figure 4: Examples of defect structures in epitaxial hexagonal-on-cubic mesopore films.
Figure 5: Examples of bilayer titania films formed in a single step.

Similar content being viewed by others

References

  1. Kresge, C. T., Leonowitz, M. E., Roth, W. J., Vartuli, J. C. & Beck, J. S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710–712 (1992).

    Article  CAS  Google Scholar 

  2. Zhao, D. et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279, 548–552 (1998).

    Article  CAS  Google Scholar 

  3. Lu, Y. et al. Continuous formation of supported cubic and hexagonal mesoporous films by sol–gel dip-coating. Nature 389, 364–368 (1997).

    Article  CAS  Google Scholar 

  4. Zhao, D. et al. Continuous mesoporous silica films with highly ordered large pore structures. Adv. Mater. 10, 1380–1385 (1998).

    Article  CAS  Google Scholar 

  5. Brezesinski, T. et al. Surfactant-mediated generation of iso-oriented dense and mesoporous crystalline metal-oxide layers. Adv. Mater. 18, 1827–1831 (2006).

    Article  CAS  Google Scholar 

  6. Yang, P., Zhao, D., Margolese, D. I., Chmelka, B. F. & Stucky, G. D. Generalized syntheses of large pore mesoporous metal oxides with semicrystalline frameworks. Nature 396, 152–155 (1998).

    Article  CAS  Google Scholar 

  7. Ying, J. Y., Mehnert, J. Y. & Wong, M. S. Synthesis and applications of supramolecular-templated mesoporous materials. Angew. Chem. Int. Ed. 38, 56–77 (1999).

    Article  CAS  Google Scholar 

  8. Boissiere, C. et al. Periodically ordered nanoscale islands and mesoporous films composed of nanocrystalline multimetallic oxides. Nature Mater. 3, 787–792 (2004).

    Article  Google Scholar 

  9. Alberius, P. C. A. et al. General predictive syntheses of cubic, hexagonal, and lamellar silica and titania mesostructured thin film. Chem. Mater. 14, 3284–3294 (2002).

    Article  CAS  Google Scholar 

  10. Sun, D. et al. Hexagonal nanoporous germanium through surfactant-driven self-assembly of Zintl clusters. Nature 441, 1126–1130 (2006).

    Article  CAS  Google Scholar 

  11. Aksay, I. A. et al. Biomimetic pathways for assembling inorganic thin films. Science 273, 892–898 (1996).

    Article  CAS  Google Scholar 

  12. Miyata, H., Noma, T., Watanabe, M. & Kuroda, K. Preparation of mesoporous silica films with fully aligned large mesochannels using nonionic surfactants. Chem. Mater. 14, 766–772 (2002).

    Article  CAS  Google Scholar 

  13. Yang, H., Kuperman, A., Coombs, N., Mamiche-Afara, S. & Ozin, G. A. Synthesis of oriented films of mesoporous silica on mica. Nature 379, 703–705 (1996).

    Article  CAS  Google Scholar 

  14. Brinker, C. J. & Dunphy, D. R. Morphological control of surfactant-templated metal oxide films. Curr. Opin. Colloid Interface Sci. 11, 126–132 (2006).

    Article  CAS  Google Scholar 

  15. Thurn-Albrecht, T. et al. Ultrahigh-density nanowires grown in self-assembled diblock copolymer templates. Science 290, 2126–2129 (2000).

    Article  CAS  Google Scholar 

  16. Ryu, D. Y., Shin, K., Drockenmuller, E., Hawker, C. J. & Russell, T. P. A generalized approach to the modification of solid surfaces. Science 308, 236–239 (2005).

    Article  CAS  Google Scholar 

  17. Freer, E. M. et al. Oriented organosilicate thin films. Nano Lett. 5, 2014–2018 (2005).

    Article  CAS  Google Scholar 

  18. Koganti, V. R. et al. Generalized coating route to silica and titania films with orthogonally tilted cylindrical nanopore arrays. Nano Lett. 6, 2567–2570 (2006).

    Article  CAS  Google Scholar 

  19. Tolbert, S. H., Firouzi, A., Stucky, G. D. & Chmelka, B. F. Magnetic field alignment of ordered silicate-surfactant composites and mesoporous silica. Science 278, 264–268 (1997).

    Article  CAS  Google Scholar 

  20. Yamauchi, Y. et al. Orientation of mesochannels in continuous mesoporous silica films by a high magnetic field. J. Mater. Chem. 15, 1137–1140 (2005).

    Article  CAS  Google Scholar 

  21. Lu, Q., Gao, F., Komarneni, S. & Mallouk, T. Ordered SBA-15 nanorod arrays inside a porous alumina membrane. J. Am. Chem. Soc. 126, 8650–8651 (2004).

    Article  CAS  Google Scholar 

  22. Walcarius, A., Sibottier, E., Etienne, E. & Ghanbaja, J. Electrochemically assisted self-assembly of mesoporous silica films. Nature Mater. 6, 602–608 (2007).

    Article  CAS  Google Scholar 

  23. Brezesinski, T., Antonietti, M. & Smarsly, B. M. Self-assembled metal oxide bilayer films with single-crystalline overlayer mesopore structure. Adv. Mater. 19, 1074–1078 (2007).

    Article  CAS  Google Scholar 

  24. Van de Water, L. G. A. & Maschmeyer, T. Mesoporous membranes—a brief overview of recent developments. Top. Catal. 29, 67–77 (2004).

    Article  CAS  Google Scholar 

  25. Chowdhury, S. R., Elshof, J. E., Benes, N. E. & Keizer, K. Development and comparative study of different nanofiltration membranes for recovery of highly charged large ions. Desalination 144, 41–46 (2002).

    Article  CAS  Google Scholar 

  26. Yu, K., Smarsly, B. & Brinker, C. J. Self-assembly and characterization of mesostructured silica films with a 3D arrangement of isolated spherical mesopores. Adv. Funct. Mater. 13, 47–52 (2003).

    Article  CAS  Google Scholar 

  27. Wang, D. et al. A general route to macroscopic hierarchical 3D nanowire networks. Angew. Chem. Int. Ed. 43, 6169–6173 (2004).

    Article  CAS  Google Scholar 

  28. Gao, F., Lu, Q. & Zhao, D. Synthesis of crystalline mesoporous CdS semiconductor nanoarrays through a mesoporous SBA-15 silica template technique. Adv. Mater. 15, 739–742 (2003).

    Article  CAS  Google Scholar 

  29. Molenkamp, W. C., Watanabe, M., Miyata, H. & Tolbert, S. H. Highly polarized luminescence from optical quality films of a semiconducting polymer aligned within oriented mesoporous silica. J. Am. Chem. Soc. 126, 4476–4477 (2004).

    Article  CAS  Google Scholar 

  30. Gross, A. F., Diehl, M. R., Beverly, K. C., Richman, E. K. & Tolbert, S. H. Controlling magnetic coupling between cobalt nanoparticles through nanoscale confinement in hexagonal mesoporous silica. J. Phys. Chem. B 107, 5475–5482 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Office of Naval Research under grant N00014-04-1-0410 and by the NSF under grant CHE-0527015. T.B. acknowledges the support of a DFG postdoctoral fellowship. Portions of this research were carried out at the Stanford Synchrotron Radiation Laboratory, a national user facility operated by Stanford University on behalf of the US Department of Energy, Office of Basic Energy Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah H. Tolbert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richman, E., Brezesinski, T. & Tolbert, S. Vertically oriented hexagonal mesoporous films formed through nanometre-scale epitaxy. Nature Mater 7, 712–717 (2008). https://doi.org/10.1038/nmat2257

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2257

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing