Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers

Abstract

Rational design and synthesis of nanowires with increasingly complex structures can yield enhanced and/or novel electronic and photonic functions1,2. For example, Ge/Si core/shell nanowires have exhibited substantially higher performance as field-effect transistors3 and low-temperature quantum devices4,5 compared with homogeneous materials, and nano-roughened Si nanowires were recently shown to have an unusually high thermoelectric figure of merit6. Here, we report the first multi-quantum-well (MQW) core/shell nanowire heterostructures based on well-defined III-nitride materials that enable lasing over a broad range of wavelengths at room temperature. Transmission electron microscopy studies show that the triangular GaN nanowire cores enable epitaxial and dislocation-free growth of highly uniform (InGaN/GaN)n quantum wells with n=3, 13 and 26 and InGaN well thicknesses of 1–3 nm. Optical excitation of individual MQW nanowire structures yielded lasing with InGaN quantum-well composition-dependent emission from 365 to 494 nm, and threshold dependent on quantum well number, n. Our work demonstrates a new level of complexity in nanowire structures, which potentially can yield free-standing injection nanolasers.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: InGaN MQW nanowire structures.
Figure 2: High-resolution TEM of nanowire MQWs.
Figure 3: MQW nanowire photoluminescence.
Figure 4: MQW nanowire lasing threshold.

Similar content being viewed by others

References

  1. Lieber, C. M. & Wang, Z. L. Functional nanowires. Mater. Res. Soc. Bull. 32, 99–104 (2007).

    Article  CAS  Google Scholar 

  2. Li, Y., Qian, F., Xiang, J. & Lieber, C. M. Nanowire electronic and optoelectronic devices. Mater. Today 9, 18–27 (2006).

    Article  CAS  Google Scholar 

  3. Xiang, J. et al. Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature 441, 489–493 (2006).

    Article  CAS  Google Scholar 

  4. Xiang, J., Vidan, A., Tinkham, M., Westervelt, R. M. & Lieber, C. M. Ge/Si nanowire mesoscopic Josephson junctions. Nature Nanotechnol. 1, 208–213 (2006).

    Article  CAS  Google Scholar 

  5. Hu, Y. et al. A Ge/Si heterostructure nanowire-based double quantum dot with integrated charge sensor. Nature Nanotechnol. 2, 622–625 (2007).

    Article  CAS  Google Scholar 

  6. Hochbaum, A. I. et al. Rough silicon nanowires as high performance thermoelectric materials. Nature 451, 163–168 (2008).

    Article  CAS  Google Scholar 

  7. Mao, S. S. Nanolasers: lasing from nanoscale quantum wires. Int. J. Nanotechnol. 1, 42–85 (2004).

    Article  CAS  Google Scholar 

  8. Chin, A. H. et al. Near-infrared semiconductor subwavelength-wire lasers. Appl. Phys. Lett. 88, 163115 (2006).

    Article  Google Scholar 

  9. Huang, M. H. et al. Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897–1899 (2001).

    Article  CAS  Google Scholar 

  10. Johnson, J. et al. Single gallium nitride nanowire lasers. Nature Mater. 1, 106–110 (2002).

    Article  CAS  Google Scholar 

  11. Gradecak, S., Qian, F., Li, Y., Park, H. -G. & Lieber, C. M. GaN nanowire lasers with low lasing thresholds. Appl. Phys. Lett. 87, 173111 (2005).

    Article  Google Scholar 

  12. Duan, X., Huang, Y., Agarwal, R. & Lieber, C. M. Single-nanowire electrically driven lasers. Nature 421, 241–245 (2003).

    Article  CAS  Google Scholar 

  13. Zapien, J. et al. Room-temperature single nanoribbon lasers. Appl. Phys. Lett. 84, 1189–1191 (2004).

    Article  CAS  Google Scholar 

  14. Liu, Y. K. et al. Wavelength-controlled lasing in ZnxCd1−xS single-crystal nanoribbons. Adv. Mater. 17, 1372–1377 (2005).

    Article  CAS  Google Scholar 

  15. Liu, Y. K., Zapien, J. A., Shan, Y. Y., Tang, H. & Lee, S. T. Wavelength-tunable lasing in single-crystal CdS1−XSeX nanoribbons. Nanotechnology 18, 365606 (2007).

    Article  Google Scholar 

  16. Asada, M., Miyamoto, Y. & Suematsu, Y. Gain and the threshold of three dimensional quantum-box lasers. IEEE J. Quantum Electron. 22, 1915–1921 (1986).

    Article  Google Scholar 

  17. Coldren, L. A. & Corzine, S. W. Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995).

    Google Scholar 

  18. <http://cimewww.epfl.ch/people/stadelmann/jemsWebSite/jems.html>.

  19. Northrup, J. E. & Neugebauer, J. Strong affinity of hydrogen for the GaN ( ) surface: Implications for molecular beam epitaxy and metalorganic chemical vapour deposition. Appl. Phys. Lett. 85, 3429–3431 (2004).

    Article  CAS  Google Scholar 

  20. Ramvall, P., Riblet, P., Nomura, S., Aoyagi, Y. & Tanaka, S. Efficient observation of narrow isolated photoluminescence spectra from spatially localized excitons in InGaN quantum wells. Jpn. J. Appl. Phys. 44, L1381–L1384 (2005).

    Article  Google Scholar 

  21. Wu, J. & Walukiewicz, W. Band gaps of InN and group III nitride alloys. Superlatt. Microstruct. 34, 63–75 (2003).

    Article  CAS  Google Scholar 

  22. Qian, F., Gradecak, S., Li, Y., Wen, C.-Y. & Lieber, C. M. Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano. Lett. 5, 2287–2291 (2005).

    Article  CAS  Google Scholar 

  23. Nakamura, S., Pearton, S. & Fasol, G. The Blue Laser Diode: The Complete Story (Springer, Berlin, 2000).

    Book  Google Scholar 

  24. Silfvast, W. T. Laser Fundamentals (Cambridge Univ. Press, Cambridge, 2005).

    Google Scholar 

  25. Martin, J. A. & Sanchez, M. Comparison between a graded and step-index optical cavity in InGaN MQW laser diodes. Semicond. Sci. Technol. 20, 290–295 (2005).

    Article  CAS  Google Scholar 

  26. Chuang, S. L. Physics of Optoelectronic Devices (Wiley, New York, 1995).

    Google Scholar 

  27. Tawara, T., Gotch, H., Akasaka, T., Kobayashi, N. & Saitoh, T. Low-threshold lasing of InGaN vertical-cavity surface-emitting lasers with dielectric distributed Bragg reflectors. Appl. Phys. Lett. 83, 830–832 (2003).

    Article  CAS  Google Scholar 

  28. Kawakami, Y. et al. In inhomogeneity and emission characteristics of InGaN. J. Phys. Condens. Matter 13, 6993–7010 (2001).

    Article  CAS  Google Scholar 

  29. Yablonskii, G. P. et al. Luminescence and lasing in InGaN/GaN multiple quantum well heterostructures grown at different temperatures. Appl. Phys. Lett. 85, 5158–5160 (2004).

    Article  CAS  Google Scholar 

  30. Takahashi, K., Yoshikawa, A. & Sandhu, A. Wide Bandgap Semiconductors: Fundamental Properties and Modern Photonic and Electronic Devices (Springer, New York, 2007).

    Book  Google Scholar 

  31. Yablonskii, G. P. et al. Multiple quantum well InGaN/GaN blue optically pumped lasers operating in the spectral range of 450–470 nm. Phys. Status Solidi A 188, 79–82 (2001).

    Article  CAS  Google Scholar 

  32. Javey, A., Nam, S., Friedman, R. S., Yan, H. & Lieber, C.M. Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics. Nano. Lett. 7, 773–777 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank C. J. Barrelet and Y. N. Wu for helpful discussions, P. Stadelmann for providing JEMS simulation software, R. Schalek for help with ultramicrotomy and A. J. Garratt-Reed for assistance in EDS elemental mapping measurements. This work was supported by the Air Force Office of Scientific Research (C.M.L.) and the Department of Energy Basic Energy Sciences, DE-FG02-07ER46394, (Z.L.W.).

Author information

Authors and Affiliations

Authors

Contributions

F.Q., Y.L. and Y.J.D. synthesized the nanowire structures. Y.L. and Y.D. carried out TEM characterization, S.G. carried out CBED studies and analysis, F.Q. carried out optical measurements and H.-G.P. carried out modelling studies. All authors contributed to the design of the experiments and data analysis. F.Q. and C.M.L. wrote the paper and all authors contributed to manuscript revisions.

Corresponding authors

Correspondence to Zhong Lin Wang or Charles M. Lieber.

Supplementary information

Supplementary Information

Supplementary Information, Methods and Figures S1–S4 (PDF 367 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qian, F., Li, Y., Gradečak, S. et al. Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nature Mater 7, 701–706 (2008). https://doi.org/10.1038/nmat2253

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2253

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing