Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Water-soluble organo-silica hybrid nanowires

Abstract

There has been growing interest in the past decade in one-dimensional (1D) nanostructures, such as nanowires, nanotubes or nanorods, owing to their size-dependent optical and electronic properties and their potential application as building blocks, interconnects and functional components for assembling nanodevices1,2. Significant progress has been made; however, the strict control of the distinctive geometry at extremely small size for 1D structures remains a great challenge in this field. The anisotropic nature of cylindrical polymer brushes has been applied to template 1D nanostructured materials, such as metal, semiconductor or magnetic nanowires3,4,5,6. Here, by constructing the cylindrical polymer brushes themselves with a precursor-containing monomer, we successfully synthesized hybrid nanowires with a silsesquioxane core and a shell made up from oligo(ethylene glycol) methacrylate units, which are soluble in water and many organic solvents. The length and diameter of these rigid wires are tunable by the degrees of polymerization of both the backbone and the side chain. They show lyotropic liquid-crystalline behaviour and can be pyrolysed to silica nanowires. This approach provides a route to the controlled fabrication of inorganic or hybrid silica nanostructures by living polymerization techniques.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis of soluble organo-silica and inorganic silica nanowires.
Figure 2: Synthetic route to soluble organo-silica hybrid nanowires via ATRP using CuBr as catalyst and N,N,N′,N′′,N′′-pentamethyldiethylenetriamine (PMDETA) as ligand.
Figure 3: AFM height images on mica.
Figure 4: Electron microscopy characterization of soluble organo-silica hybrid nanowires.
Figure 5: Lyotropic liquid-crystalline phase of [(SiO1.5)20-b-OEGMA57]3,200 organo-silica hybrid nanowires.

Similar content being viewed by others

References

  1. Johnson, J. C. et al. Single gallium nitride nanowire lasers. Nature Mater. 1, 106–110 (2002).

    Article  CAS  Google Scholar 

  2. Wang, Z. L. & Song, J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006).

    Article  CAS  Google Scholar 

  3. Djalali, R., Li, S.-Y. & Schmidt, M. Amphipolar core–shell cylindrical brushes as templates for the formation of gold clusters and nanowires. Macromolecules 35, 4282–4288 (2002).

    Article  CAS  Google Scholar 

  4. Zhang, M., Estournes, C., Bietsch, W. & Müller, A. H. E. Superparamagnetic hybrid nanocylinders. Adv. Funct. Mater. 14, 871–882 (2004).

    Article  CAS  Google Scholar 

  5. Zhang, M., Drechsler, M. & Müller, A. H. E. Template-controlled synthesis of wire-like cadmium sulfide nanoparticle assemblies within core–shell cylindrical polymer brushes. Chem. Mater. 16, 537–543 (2004).

    Article  CAS  Google Scholar 

  6. Yuan, J., Drechsler, M., Xu, Y., Zhang, M. & Müller, A. H. E. Cadmium selenide nanowires within core–shell cylindrical polymer brushes: Synthesis, characterization and the twice loading process. Polymer 49, 1547–1554 (2008).

    Article  CAS  Google Scholar 

  7. Duan, X. & Lieber, C. M. General synthesis of compound semiconductor nanowires. Adv. Mater. 12, 298–302 (2000).

    Article  CAS  Google Scholar 

  8. Ma, C. & Wang, Z. L. Road map for the controlled synthesis of CdSe nanowires, nanobelts, and nanosaws-a step towards nanomanufacturing. Adv. Mater. 17, 2635–2639 (2005).

    Article  CAS  Google Scholar 

  9. Grebinski, J. W., Richter, K. L., Zhang, J., Kosel, T. H. & Kuno, M. Synthesis and characterization of Au/Bi core/shell nanocrystals: A precursor toward II–VI nanowires. J. Phys. Chem. B 108, 9745–9751 (2004).

    Article  CAS  Google Scholar 

  10. Adelung, R. et al. Strain-controlled growth of nanowires within thin-film cracks. Nature Mater. 3, 375–379 (2004).

    Article  CAS  Google Scholar 

  11. Milenkovic, S., Hassel, A. W. & Schneider, A. Effect of the growth conditions on the spatial features of Re nanowires produced by directional solidification. Nano Lett. 6, 794–799 (2006).

    Article  CAS  Google Scholar 

  12. Zhang, M. & Müller, A. H. E. Cylindrical polymer brushes. J. Polym. Sci. A 43, 3461–3481 (2005).

    Article  CAS  Google Scholar 

  13. Dziezok, P., Sheiko, S. S., Fischer, K., Schmidt, M. & Möller, M. Cylindrical molecular brushes. Angew. Chem. Int. Ed. 36, 2812–2815 (1998).

    Article  Google Scholar 

  14. Berdyyeva, T., Woodworth, C. D. & Sokolov, I. Visualization of cytoskeletal elements by the atomic force microscope. Ultramicroscopy 102, 189–198 (2005).

    Article  CAS  Google Scholar 

  15. Stöber, W., Fink, A. & Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62–69 (1968).

    Article  Google Scholar 

  16. Wang, X. et al. Cylindrical block copolymer micelles and co-micelles of controlled length and architecture. Science 317, 644–647 (2007).

    Article  CAS  Google Scholar 

  17. Wang, X. et al. Shell-cross-linked cylindrical polyisoprene-b-polyferrocenylsilane (PI-b-PFS) block copolymer micelles: One-dimensional (1D) organometallic nanocylinders. J. Am. Chem. Soc. 129, 5630–5639 (2007).

    Article  CAS  Google Scholar 

  18. Zollfrank, C., Scheel, H. & Greil, P. Regioselectively ordered silica nanotubes by molecular templating. Adv. Mater. 19, 984–987 (2007).

    Article  CAS  Google Scholar 

  19. Ren, L. & Wark, M. Controlled growth of Pt-containing SiO2 nanotubes with high aspect ratios. Chem. Mater. 17, 5928–5934 (2005).

    Article  CAS  Google Scholar 

  20. Park, J. W. & Thomas, E. L. A surface-reactive rod-coil diblock copolymer: Nano- and micropatterned polymer brushes. J. Am. Chem. Soc. 124, 514–515 (2002).

    Article  CAS  Google Scholar 

  21. Wei, H. et al. Synthesis and applications of shell cross-linked thermoresponsive hybrid micelles based on poly(N-isopropylacrylamide-co-3-(trimethoxysilyl)propyl methacrylate)-b-poly(methyl methacrylate). Langmuir 24, 4564–4570 (2008).

    Article  CAS  Google Scholar 

  22. Hermanson, K. O., Lumsdon, S. O., Williams, J. P., Kater, E. W. & Velev, O. D. Dielectrophoretic assembly of electrically functional microwires from nanoparticle suspensions. Science 294, 1082–1086 (2001).

    Article  CAS  Google Scholar 

  23. Huang, Y., Duan, X., Wei, Q. & Lieber, C. M. Directed assembly of one-dimensional nanostructures into functional networks. Science 291, 630–633 (2001).

    Article  CAS  Google Scholar 

  24. Elbahri, M., Paretkar, D., Hirmas, K., Jebril, S. & Adelung, R. Anti-lotus effect for nanostructuring at the leidenfrost temperature. Adv. Mater. 19, 1262–1266 (2007).

    Article  CAS  Google Scholar 

  25. van der Schoot, P. The hexagonal phase of wormlike micelles. J. Chem. Phys. 104, 1130–1139 (1996).

    Article  CAS  Google Scholar 

  26. Wintermantel, M. et al. Lyotropic phases formed by ‘molecular bottlebrushes’. Angew. Chem. Int. Ed. 34, 1472–1474 (1995).

    Article  CAS  Google Scholar 

  27. Li, L.-S. & Alivisatos, A. P. Semiconductor nanorod liquid crystals and their assembly on a substrate. Adv. Mater. 15, 408–411 (2003).

    Article  CAS  Google Scholar 

  28. Li, L.-S., Walda, J., Manna, L. & Alivisatos, A. P. Semiconductor nanorod liquid crystals. Nano Lett. 2, 557–560 (2002).

    Article  CAS  Google Scholar 

  29. Zhang, M., Breiner, T., Mori, H. & Müller, A. H. E. Amphiphilic cylindrical brushes with poly(acrylic acid) core and poly(n-butyl acrylate) shell and narrow length distribution. Polymer 44, 1449–1458 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (grant Mu896/22). We thank M. Drechsler, V. Olszowka, M. Hund, B. Goßler, C. Löffler, and J. Crassous for their help in TEM, AFM, SEM, TGA and polarized optical microscopy measurements. We also thank G. Lattermann for the helpful discussions on polarized optical microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel H. E. Müller.

Supplementary information

Supplementary Information

Supplementary Figures S1–S3 (PDF 91 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, J., Xu, Y., Walther, A. et al. Water-soluble organo-silica hybrid nanowires. Nature Mater 7, 718–722 (2008). https://doi.org/10.1038/nmat2232

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2232

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing