Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model

Abstract

Lithium iron phosphate is one of the most promising positive-electrode materials for the next generation of lithium-ion batteries that will be used in electric and plug-in hybrid vehicles. Lithium deintercalation (intercalation) proceeds through a two-phase reaction between compositions very close to LiFePO4 and FePO4. As both endmember phases are very poor ionic and electronic conductors, it is difficult to understand the intercalation mechanism at the microscopic scale. Here, we report a characterization of electrochemically deintercalated nanomaterials by X-ray diffraction and electron microscopy that shows the coexistence of fully intercalated and fully deintercalated individual particles. This result indicates that the growth reaction is considerably faster than its nucleation. The reaction mechanism is described by a ‘domino-cascade model’ and is explained by the existence of structural constraints occurring just at the reaction interface: the minimization of the elastic energy enhances the deintercalation (intercalation) process that occurs as a wave moving through the entire crystal. This model opens new perspectives in the search for new electrode materials even with poor ionic and electronic conductivities.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: XRD patterns obtained ex situ for cast ‘LixFePO4’ electrodes recovered at different states of charge during the first cycle of LiLiFePO4 lithium cells.
Figure 2: High-resolution images of crystallites with their electron diffraction patterns.
Figure 3: Structure of LiFePO4.
Figure 4
Figure 5: Schematic view of the ‘domino-cascade’ mechanism for the lithium deintercalation/intercalation mechanism in a LiFePO4 crystallite.

Similar content being viewed by others

References

  1. Padhi, A. K., Nanjundaswamy, K. S. & Goodenough, J. B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188–1194 (1997).

    Article  CAS  Google Scholar 

  2. Chen, Z. H. & Dahn, J. R. Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density. J. Electrochem. Soc. 149, A1184–A1189 (2002).

    Article  CAS  Google Scholar 

  3. Franger, S., Le Cras, F., Bourbon, C. & Rouault, H. LiFePO4 synthesis routes for enhanced electrochemical performance. Electrochem. Solid State Lett. 5, A231–A233 (2002).

    Article  CAS  Google Scholar 

  4. Delacourt, C., Wurm, C., Laffont, L., Leriche, J. B. & Masquelier, C. Electrochemical and electrical properties of Nb- and/or C-containing LiFePO4 composites. Solid State Ion. 177, 333–341 (2006).

    Article  CAS  Google Scholar 

  5. Chen, J. J. & Whittingham, M. S. Hydrothermal synthesis of lithium iron phosphate. Electrochem. Commun. 8, 855–858 (2006).

    Article  CAS  Google Scholar 

  6. Andersson, A. S., Kalska, B., Haggstrom, L. & Thomas, J. O. Lithium extraction/insertion in LiFePO4: An X-ray diffraction and Mossbauer spectroscopy study. Solid State Ion. 130, 41–52 (2000).

    Article  CAS  Google Scholar 

  7. Prosini, P. P. Modeling the voltage profile for LiFePO4 . J. Electrochem. Soc. 152, A1925–A1929 (2005).

    Article  CAS  Google Scholar 

  8. Chen, G. Y., Song, X. Y. & Richardson, T. J. Electron microscopy study of the LiFePO4 to FePO4 phase transition. Electrochem. Solid State Lett. 9, A295–A298 (2006).

    Article  CAS  Google Scholar 

  9. Laffont, L. et al. Study of the LiFePO4/FePO4 two-phase system by high-resolution electron energy loss spectroscopy. Chem. Mater. 18, 5520–5529 (2006).

    Article  CAS  Google Scholar 

  10. Ravet, N. et al. Electrode material having improved surface conductivity. CA Patent No. EP1049182 (2000-05-02 2002).

  11. Yonemura, M., Yamada, A., Takei, Y., Sonoyama, N. & Kanno, R. Comparative kinetic study of olivine LixMPO4 (M=Fe, Mn). J. Electrochem. Soc. 151, A1352–A1356 (2004).

    Article  CAS  Google Scholar 

  12. Yamada, A., Koizumi, H., Sonoyama, N. & Kanno, R. Phase change in LixFePO4 . Electrochem. Solid State Lett. 8, A409–A413 (2005).

    Article  CAS  Google Scholar 

  13. Meethong, N., Huang, H. Y. S., Carter, W. C. & Chiang, Y. M. Size-dependent lithium miscibility gap in nanoscale Li1−xFePO4 . Electrochem. Solid State Lett. 10, A134–A138 (2007).

    Article  CAS  Google Scholar 

  14. Yamada, A. et al. Room-temperature miscibility gap in LixFePO4 . Nature Mater. 5, 357–360 (2006).

    Article  CAS  Google Scholar 

  15. Meethong, N., Huang, H.-Y. S., Speakman, S. A., Carter, W. C. & Chiang, Y.-M. Strain accommodation during phase transformations in olivine-based cathodes as a materials selection criterion for high-power rechargeable batteries. Adv. Funct. Mater. 17, 1115–1123 (2007).

    Article  CAS  Google Scholar 

  16. Morgan, D., Van der Ven, A. & Ceder, G. Li conductivity in LixMPO4 (M=Mn, Fe, Co, Ni) olivine materials. Electrochem. Solid State Lett. 7, A30–A32 (2004).

    Article  CAS  Google Scholar 

  17. Islam, M. S., Driscoll, D. J., Fisher, C. A. J. & Slater, P. R. Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material. Chem. Mater. 17, 5085–5092 (2005).

    Article  CAS  Google Scholar 

  18. Maxisch, T., Zhou, F. & Ceder, G. Ab initio study of the migration of small polarons in olivine LixFePO4 and their association with lithium ions and vacancies. Phys. Rev. B 7310, 104301 (2006) NIL_258–NIL_263.

    Article  Google Scholar 

  19. Shannon, R.D. & Prewitt, C.T. Effective ionic radii in oxides and fluorides. Acta Crystallogr. B25, 925–946 (1969).

    Article  Google Scholar 

  20. Srinivasan, V. & Newman, J. Existence of path-dependence in the LiFePO4 electrode. Electrochem. Solid State Lett. 9, A110–A114 (2006).

    Article  CAS  Google Scholar 

  21. Ellis, B., Perry, L. K., Ryan, D. H. & Nazar, L. F. Small polaron hopping in LixFePO4 solid solutions: Coupled lithium-ion and electron mobility. J. Am. Chem. Soc. 128, 11416–11422 (2006).

    Article  CAS  Google Scholar 

  22. Allen, J. L., Jow, T. R. & Wolfenstine, J. Kinetic study of the electrochemical FePO4 to LiFePO4 phase transition. Chem. Mater. 19, 2108–2111 (2007).

    Article  CAS  Google Scholar 

  23. Wagemaker, M., Borghols, W. J. H. & Mulder, F. M. Large impact of particle size on insertion reactions. A case for anatase LixTiO2 . J. Am. Chem. Soc. 129, 4323–4327 (2007).

    Article  CAS  Google Scholar 

  24. Rodriguez-Carvajal, J. Laboratoire Léon Brillouin, <http://www-llb.cea.fr/fullweb/powder.htm>  Laboratoire Léon Brillouin, (2004).

Download references

Acknowledgements

The authors wish to thank CEA, ADEME (PVE no. 0366C0072) and Région Aquitaine for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. Delmas or F. Le Cras.

Supplementary information

Supplementary Information

Supplementary Figures S1–S3 (PDF 520 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delmas, C., Maccario, M., Croguennec, L. et al. Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. Nature Mater 7, 665–671 (2008). https://doi.org/10.1038/nmat2230

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2230

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing