Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Resonant bonding in crystalline phase-change materials

Abstract

The identification of materials suitable for non-volatile phase-change memory applications is driven by the need to find materials with tailored properties for different technological applications and the desire to understand the scientific basis for their unique properties. Here, we report the observation of a distinctive and characteristic feature of phase-change materials. Measurements of the dielectric function in the energy range from 0.025 to 3 eV reveal that the optical dielectric constant is 70–200% larger for the crystalline than the amorphous phases. This difference is attributed to a significant change in bonding between the two phases. The optical dielectric constant of the amorphous phases is that expected of a covalent semiconductor, whereas that of the crystalline phases is strongly enhanced by resonant bonding effects. The quantification of these is enabled by measurements of the electronic polarizability. As this bonding in the crystalline state is a unique fingerprint for phase-change materials, a simple scheme to identify and characterize potential phase-change materials emerges.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sample cross-section.
Figure 2: Infrared reflectance spectra of an AgInTe2 film with a thickness of 0.65 μm.
Figure 3: Infrared reflectance spectra of a Ge2Sb1Te4 film.
Figure 4: Dielectric function ɛ1(ω) and ɛ2(ω) for various materials.
Figure 5: Schematic diagram demonstrating the origin of resonance bonding for Sb.

Similar content being viewed by others

References

  1. Wuttig, M. & Yamada, N. Phase-change materials for rewriteable data storage. Nature Mater. 6, 824–832 (2007).

    Article  CAS  Google Scholar 

  2. Welnic, W., Botti, S., Reining, L. & Wuttig, M. Origin of the optical contrast in phase-change materials. Phys. Rev. Lett. 98, 236403 (2007).

    Article  Google Scholar 

  3. Ovshinsky, S. R. Reversible electrical switching phenomena in disordered structures. Phys. Rev. Lett. 21, 1450–1453 (1968).

    Article  Google Scholar 

  4. Lankhorst, M. H. R., Ketelaars, B. W. S. M. M. & Wolters, R. A. M. Low-cost and nanoscale non-volatile memory concept for future silicon chips. Nature Mater. 4, 347–352 (2005).

    Article  CAS  Google Scholar 

  5. Lacaita, A. L. & Wouters, D. in Nanotechnology Vol. 3 (ed. Waser, R.) (Wiley–VCH, Weinheim, 2008).

    Google Scholar 

  6. Ielmini, D. & Zhang, Y. G. Analytical model for subthreshold conduction and threshold switching in chalcogenide-based memory devices. J. Appl. Phys. 102, 054517 (2007).

    Article  Google Scholar 

  7. Lee, B. S. et al. Investigation of the optical and electronic properties of Ge2Sb2Te5 phase change material in its amorphous, cubic, and hexagonal phases. J. Appl. Phys. 97, 093509 (2005).

    Article  Google Scholar 

  8. Mendoza-Galvan, A. & Gonzalez-Hernandez, J. Drude-like behavior of Ge:Sb:Te alloys in the infrared. J. Appl. Phys. 87, 760–765 (2000).

    Article  CAS  Google Scholar 

  9. Luo, M. B. & Wuttig, M. The dependence of crystal structure of Te-based phase-change materials on the number of valence electrons. Adv. Mater. 16, 439–443 (2004).

    Article  CAS  Google Scholar 

  10. Yamada, N. & Matsunaga, T. Structure of laser-crystallized Ge2Sb2+xTe5 sputtered thin films for use in optical memory. J. Appl. Phys. 88, 7020–7028 (2000).

    Article  CAS  Google Scholar 

  11. Jellison, G. E. Spectroscopic ellipsometry data analysis: Measured versus calculated quantities. Thin Solid Films 313, 33–39 (1998).

    Article  Google Scholar 

  12. Ashcroft, N. & Mermin, D. Solid State Physics 542 (Holt-Saunders, Philadelphia, 1976).

    Google Scholar 

  13. Levine, B. F. Bond susceptibilities and ionicities in complex crystal-structures. J. Chem. Phys. 59, 1463–1486 (1973).

    Article  CAS  Google Scholar 

  14. Olsen, J. K., Li, H. & Taylor, P. C. On the structure of GexSbyTe1−xy glasses. J. Ovonics Res. 1, 1–6 (2005).

    Google Scholar 

  15. Kolobov, A. V. et al. Understanding the phase-change mechanism of rewritable optical media. Nature Mater. 3, 703–708 (2004).

    Article  CAS  Google Scholar 

  16. Baker, D. A., Paesler, M. A., Lucovsky, G., Agarwal, S. C. & Taylor, P. C. Application of bond constraint theory to the switchable optical memory material Ge2Sb2Te5 . Phys. Rev. Lett. 96, 255501 (2006).

    Article  CAS  Google Scholar 

  17. Jovari, P. et al. Local order in amorphous Ge2Sb2Te5 and Ge1Sb2Te4 . Phys. Rev. B 77, 035202 (2008).

    Article  Google Scholar 

  18. Rabe, K. M. & Joannopoulos, J. D. Structural properties of GeTe at T=0. Phys. Rev. B 36, 3319–3324 (1987).

    Article  CAS  Google Scholar 

  19. Robertson, J., Xiong, K. & Peacock, P. W. Electronic and atomic structure of Ge2Sb2Te5 phase change memory material. Thin Solid Films 515, 7538–7541 (2007).

    Article  CAS  Google Scholar 

  20. Peierls, R. E. Quantum Theory of Solids (Oxford Univ. Press, Oxford, 1956).

    Google Scholar 

  21. Gaspard, J. P. & Ceolin, R. Hume-Rothery rule in V–VI compounds. Solid State Commun. 84, 839–842 (1992).

    Article  CAS  Google Scholar 

  22. Wuttig, M. et al. The role of vacancies and local distortions in the design of new phase-change materials. Nature Mater. 6, 122–127 (2007).

    Article  CAS  Google Scholar 

  23. Pauling, L. Nature of Chemical Bond (Cornell Univ. Press, New York, 1939).

    Google Scholar 

  24. Littlewood, P. B. The crystal structure of IV–VI compounds: I. Classification and description. J. Phys. C 13, 4855–4873 (1980).

    Article  CAS  Google Scholar 

  25. Littlewood, P. B. Dielectric-constant of cubic IV–VI compounds. J. Phys. C 12, 4459–4468 (1979).

    Article  CAS  Google Scholar 

  26. Lucovsky, G. & White, R. M. Effects of resonance bonding on properties of crystalline and amorphous semiconductors. Phys. Rev. B 8, 660–667 (1973).

    Article  CAS  Google Scholar 

  27. Robertson, J. New model for structure of amorphous selenium. Phil. Mag. 34, 13–31 (1976).

    Article  CAS  Google Scholar 

  28. Joannopoulos, J. D., Schluter, M. & Cohen, M. L. Electronic-structure of trigonal and amorphous Se and Te. Phys. Rev. B 11, 2186–2199 (1975).

    Article  CAS  Google Scholar 

  29. Leiga, A. G. Optical properties of trigonal selenium in vacuum ultraviolet. J. Opt. Soc. Am. 58, 880–884 (1968).

    Article  CAS  Google Scholar 

  30. Leiga, A. G. Optical properties of amorphous selenium in vacuum ultraviolet. J. Opt. Soc. Am. 58, 1441–1445 (1968).

    Article  CAS  Google Scholar 

  31. Tutihasi, S., Roberts, G. G., Keezer, R. C. & Drews, R. E. Optical properties of tellurium in fundamental absorption region. Phys. Rev. 177, 1143–1150 (1969).

    Article  CAS  Google Scholar 

  32. Bammes, P., Tuomi, T., Klucker, R. & Koch, E. E. Anisotropy of dielectric-constants of trigonal selenium and tellurium between 3 and 30 eV. Phys. Status Solidi B 49, 561–570 (1972).

    Article  CAS  Google Scholar 

  33. Potts, W. J. Chemical Infrared Spectroscopy (Wiley, New York, 1963).

    Google Scholar 

  34. Schubert, M. Infrared Ellipsometry on Semiconductor Layer Structures (Springer Tracts in Modern Physics, Vol. 209, Springer, Berlin, 2004).

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the design of Fig. 5 by P. Merkelbach, the careful preparation of phase-change targets by Umicore (Liechtenstein) within the EU project CAMELS and financial support by the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Wuttig.

Supplementary information

Supplementary Information

Supplementary Figure S1 (PDF 252 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shportko, K., Kremers, S., Woda, M. et al. Resonant bonding in crystalline phase-change materials. Nature Mater 7, 653–658 (2008). https://doi.org/10.1038/nmat2226

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2226

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing