Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Guided and fluidic self-assembly of microstructures using railed microfluidic channels

Abstract

Fluidic self-assembly is a promising pathway for parallel fabrication of devices made up of many small components. Here, we introduce ‘railed microfluidics’ as an agile method to guide and assemble microstructures inside fluidic channels. The guided movement of microstructures in microfluidic channels was achieved by fabricating grooves (‘rails’) on the top surface of the channels and also creating complementary polymeric microstructures that fit with the grooves. Using the rails as a guiding mechanism, we built complex one- and two-dimensional microsystems in which all the microstructures initially involved in the fabrication method were incorporated as components in the final product. Complex structures composed of more than 50 microstructures (each sized smaller than 50 μm) were fluidically self-assembled with zero error. Furthermore, we were able to use the rails to guide microstructures through different fluid solutions, successfully overcoming strong interfacial tension between solutions. On the basis of rail-guided self-assembly and cross-solution movement, we demonstrated heterogeneous fluidic self-assembly of polymeric microstructures and living cells. In addition to such assembly of in situ polymerized structures, we also guided and assembled externally fabricated silicon chips—demonstrating the feasible application of railed microfluidics to other materials systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Concept of railed microfluidics and guiding mechanism (see Supplementary Information, Movie S1).
Figure 2: Guided self-assembly of microlatches (see Supplementary Information, Movie S2).
Figure 3: Complex self-assembly in railed microfluidics (see Supplementary Information, Movie S3).
Figure 4: Heterogeneous self-assembly of microstructures made of different materials using cross-solution movement.
Figure 5: Immediate application examples applying the railed microfluidic design to tissue engineering and microchip packaging.

Similar content being viewed by others

References

  1. Morris, C. J., Stauth, S. A. & Parviz, B. A. Self-assembly for microscale and nanoscale packaging: Steps toward self-packaging. IEEE Trans. Adv. Packaging 28, 600–611 (2005).

    Article  Google Scholar 

  2. Whitesides, G. M. & Grzybowski, B. Self-assembly at all scales. Science 295, 2418–2421 (2002).

    Article  CAS  Google Scholar 

  3. Yeh, H. J. & Smith, J. S. Fluidic self-assembly for the integration of GaAs light-emitting diodes on Si substrates. IEEE Photon. Technol. Lett. 6, 706–708 (1994).

    Article  Google Scholar 

  4. Snyder, E. J., Chideme, J. & Craig, G. S. W. Fluidic self-assembly of semiconductor devices: A promising new method of mass-producing flexible circuitry. Jpn. J. Appl. Phys. 41, 4366–4369 (2002).

    Article  CAS  Google Scholar 

  5. Hulteen, J. C. & Duyne, R. P. V. Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces. J. Vac. Sci. Technol. 13, 1553–1558 (1995).

    Article  Google Scholar 

  6. Ormonde, A. D., Hicks, E. C. M., Castillo, J. & Duyne, R. P. V. Nanosphere lithography: Fabrication of large-area Ag nanoparticle arrays by convective self-assembly and their characterization by scanning UV–visible extinction spectroscopy. Langmuir 20, 6927–6931 (2004).

    Article  CAS  Google Scholar 

  7. Dendukuri, D., Hatton, T. A. & Doyle, P. S. Synthesis and self-assembly of amphiphilic polymeric microparticles. Langmuir 23, 4669–4674 (2007).

    Article  CAS  Google Scholar 

  8. Boote, J. J., Critchley, K. & Evans, S. D. Surfactant mediated assembly of gold nanowires on surfaces. J. Exp. Nanosci. 1, 125–142 (2006).

    Article  CAS  Google Scholar 

  9. Tanase, M. et al. Magnetic trapping and self-assembly of multicomponent nanowires. J. Appl. Phys. 91, 8549–8551 (2002).

    Article  CAS  Google Scholar 

  10. Huang, Y., Duan, X., Wei, Q. & Lieber, C. M. Directed assembly of one-dimensional nanostructures into functional networks. Science 291, 630–633 (2001).

    Article  CAS  Google Scholar 

  11. Salalha, W. & Zussman, E. Investigation of fluidic assembly of nanowires using a droplet inside microchannels. Phys. Fluids 17, 063301 (2005).

    Article  Google Scholar 

  12. Stauth, S. A. & Parviz, B. A. Self-assembled single-crystal silicon circuits on plastic. Proc. Natl Acad. Sci. 103, 13922–13927 (2006).

    Article  CAS  Google Scholar 

  13. Gracias, D. H., Tien, J., Breen, T. L., Hsu, C. & Whitesides, G. M. Forming electrical networks in three dimensions by self-assembly. Science 289, 1170–1172 (2000).

    Article  CAS  Google Scholar 

  14. Scott, K. L. et al. High-performance inductors using capillary based fluidic self-assembly. J. Microelectromech. Syst. 13, 300–309 (2004).

    Article  Google Scholar 

  15. Srinivasan, U., Liepmann, D. & Howe, R. T. Microstructure to substrate self-assembly using capillary forces. J. Microelectromech. Syst. 10, 17–24 (2001).

    Article  CAS  Google Scholar 

  16. Jacobs, H. O., Tao, A. R., Schwartz, A., Gracias, D. H. & Whitesides, G. M. Fabrication of a cylindrical display by patterned assembly. Science 296, 323–325 (2002).

    Article  CAS  Google Scholar 

  17. Smith, J. S. Fluidic self-assembly of active antenna. US patent 6,611,237 (2003).

  18. Lu, Y., Yin, Y. & Xia, Y. A self-assembly approach to the fabrication of patterned, two-dimensional arrays of microlenses of organic polymers. Adv. Mater. 13, 34–37 (2001).

    Article  CAS  Google Scholar 

  19. Xia, Y., Yin, Y., Lu, Y. & McLellan, J. Template-assisted self-assembly of spherical colloids into complex and controllable structures. Adv. Funct. Mater. 13, 907–918 (2003).

    Article  CAS  Google Scholar 

  20. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    Article  CAS  Google Scholar 

  21. Stroock, A. D., Dertinger, S. K., Whitesides, G. M. & Ajdari, A. Patterning flows using grooved surfaces. Anal. Chem. 74, 5306–5312 (2002).

    Article  CAS  Google Scholar 

  22. Chung, S. E. et al. Optofluidic maskless lithography system for real-time synthesis of photopolymerized microstructures in microfluidic channels. Appl. Phys. Lett. 91, 041106 (2007).

    Article  Google Scholar 

  23. Dendukuri, D., Pregibon, D. C., Collins, J., Hatton, T. A. & Doyle, P. S. Continuous-flow lithography for high-throughput microparticle synthesis. Nature Mater. 5, 365–369 (2006).

    Article  CAS  Google Scholar 

  24. Koh, W. G., Revzin, A. & Pishko, M. V. Poly(ethylene glycol) hydrogel microstructures encapsulating living cells. Langmuir 18, 2459–2462 (2002).

    Article  CAS  Google Scholar 

  25. Koh, W. G., Itle, L. J. & Pishko, M. V. Molding of hydrogel microstructures to create multiphenotype cell microarrays. Anal. Chem. 75, 5783–5789 (2003).

    Article  CAS  Google Scholar 

  26. Liu, V. A. & Bhatia, S. N. Three-dimensional photopatterning of hydrogels containing living cells. Biomed. Microdev. 4, 257–266 (2002).

    Article  CAS  Google Scholar 

  27. El-Ali, J., Sorger, P. K. & Jensen, K. F. Cells on chips. Nature 442, 403–411 (2006).

    Article  CAS  Google Scholar 

  28. Yeh, J. et al. Micromolding of shape-controlled, harvestable cell-laden hydrogels. Biomaterials 27, 5391–5398 (2006).

    Article  CAS  Google Scholar 

  29. Albrecht, D. R., Tsang, V. L., Sah, R. L. & Bhatia, S. N. Photo-and electropatterning of hydrogel-encapsulated living cell arrays. Lab Chip 5, 111–118 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the System IC 2010 project of the Ministry of Knowledge Economy and the Nano Systems Institute National Core Research Center (NSI-NCRC) program of KOSEF. We thank M.-O. Lee of the College of Pharmacy, SNU, for providing the cell line.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunghoon Kwon.

Supplementary information

Supplementary Information

Section S1–S3 (PDF 313 kb)

Supplementary Information

Supplementary Movie S1 (MOV 3937 kb)

Supplementary Information

Supplementary Movie S2 (MOV 4858 kb)

Supplementary Information

Supplementary Movie S3 (MOV 3738 kb)

Supplementary Information

Supplementary Movie S4 (MOV 2208 kb)

Supplementary Information

Supplementary Movie S5 (MOV 577 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, S., Park, W., Shin, S. et al. Guided and fluidic self-assembly of microstructures using railed microfluidic channels. Nature Mater 7, 581–587 (2008). https://doi.org/10.1038/nmat2208

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2208

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing