Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Phase instability induced by polar nanoregions in a relaxor ferroelectric system

Abstract

Relaxor ferroelectrics are a special class of material that exhibit an enormous electromechanical response and are easily polarized with an external field. These properties make them attractive for applications as sensors and actuators. Local clusters of randomly oriented polarization, known as polar nanoregions (PNRs), are specific to relaxor ferroelectrics and play a key role in governing their dielectric properties. Here, we show through neutron inelastic scattering experiments that the PNRs can also significantly affect the structural properties of the relaxor ferroelectric Pb(Zn1/3Nb2/3)O3-4.5%PbTiO3 (PZN-4.5%PT). A strong interaction is found between the PNRs and the propagation of acoustic phonons. A comparison between acoustic phonons propagating along different directions reveals a large asymmetry in the lattice dynamics that is induced by the PNRs. We suggest that a phase instability induced by this PNR–phonon interaction may contribute to the ultrahigh piezoelectric response of this and related relaxor ferroelectric materials. Our results naturally explain the emergence of the various observed monoclinic phases in these systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neutron scattering measurements carried out on a PZN-4.5%PT single crystal with dimensions of 10×10×3 mm3.
Figure 2: Constant-Q scans measured near the (220) and Bragg peaks at q=0.1 and 0.2 r.l.u.
Figure 3: Phonon dispersions and energy widths (half-widths at half-maximum) measured around the (220) and Bragg peaks under field-cooled and zero-field-cooled conditions.
Figure 4: Schematic diagrams of the different polarization directions (marked by arrows) in the relaxor perovskite structure.

Similar content being viewed by others

References

  1. Park, S.-E. & Shrout, T. R. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 82, 1804–1811 (1997).

    Article  CAS  Google Scholar 

  2. Uchino, K. Piezoelectric Actuators and Ultrasonic Motors (Kluwer, Dordrecht, 1996).

    Book  Google Scholar 

  3. Service, R. F. Shape changing crystals get shiftier. Science 275, 1878 (1997).

    Article  CAS  Google Scholar 

  4. Cross, L. E. Relaxor ferroelectrics. Ferroelectrics 76, 241–267 (1987).

    Article  CAS  Google Scholar 

  5. Burns, G. & Dacol, F. H. Crystalline ferroelectrics with glassy polarization behavior. Phys. Rev. B 28, 2527–2530 (1983).

    Article  CAS  Google Scholar 

  6. Blinc, R. et al. Local polarization distribution and Edwards–Anderson order parameter of relaxor ferroelectrics. Phys. Rev. Lett. 83, 424–427 (1999).

    Article  CAS  Google Scholar 

  7. Bokov, A. A. & Ye, Z.-G. Universal relaxor polarization in Pb(Mg1/3Nb2/3)O3 and related materials. Phys. Rev. B 66, 064103 (2002).

    Article  Google Scholar 

  8. Xu, G., Gehring, P. M. & Shirane, G. Coexistence and competition of local- and long-range polar orders in a ferroelectric relaxor. Phys. Rev. B 74, 104110 (2006).

    Article  Google Scholar 

  9. You, H. & Zhang, Q. M. Diffuse x-ray scattering study of lead magnesium niobate single crystals. Phys. Rev. Lett. 79, 3950–3953 (1997).

    Article  CAS  Google Scholar 

  10. Takesue, N., Fujii, Y. & You, H. X-ray diffuse scattering study on ionic-pair displacement correlations in relaxor lead magnesium niobate. Phys. Rev. B 64, 184112 (2001).

    Article  Google Scholar 

  11. La-Orauttapong, D. et al. Neutron scattering study of the relaxor ferroelectric (1-x)Pb(Zn1/3Nb2/3)O3-xPbTiO3 . Phys. Rev. B 67, 134110 (2003).

    Article  Google Scholar 

  12. Hlinka, J. et al. Diffuse scattering in Pb(Mg1/3Nb2/3)O3 with PbTiO3 by quasi-elastic neutron scattering. J. Phys. Condens. Matter 15, 4249–4257 (2003).

    Article  CAS  Google Scholar 

  13. Hiraka, H., Lee, S.-H., Gehring, P. M., Xu, G. & Shirane, G. Cold neutron study on the diffuse scattering and phonon excitations in the relaxor Pb(Mg1/3Nb2/3)O3 . Phys. Rev. B 70, 184105 (2004).

    Article  Google Scholar 

  14. Xu, G., Zhong, Z., Hiraka, H. & Shirane, G. Three dimensional mapping of diffuse scattering in Pb(Zn1/3Nb2/3)O3-xPbTiO3 . Phys. Rev. B 70, 174109 (2004).

    Article  Google Scholar 

  15. Noheda, B., Cox, D. E., Shirane, G., Gao, J. & Ye, Z.-G. Electric field induced phase transitions in Pb(Zn1/3Nb2/3)1-xTixO3. Phys. Rev. B 65, 224101 (2002).

    Article  Google Scholar 

  16. Xu, G., Zhong, Z., Bing, Y., Ye, Z.-G. & Shirane, G. Electric field induced redistribution of polar nano-regions in a relaxor ferroelectric. Nature Mater. 5, 134–140 (2006).

    Article  CAS  Google Scholar 

  17. Stock, C. et al. Strong influence of the diffuse component on the lattice dynamics in Pb(Mg1/3Nb2/3)O3 . J. Phys. Soc. Japan 74, 3002–3010 (2005).

    Article  CAS  Google Scholar 

  18. Gehring, P. M., Park, S.-E. & Shirane, G. Soft phonon anomalies in the relaxor ferroelectric Pb[(Zn1/3Nb2/3)0.92Ti0.08]O3 . Phys. Rev. Lett. 84, 5216–5219 (2000).

    Article  CAS  Google Scholar 

  19. Shirane, G., Xu, G. & Gehring, P. M. Dynamics and Structure of PMN and PZN. Ferroelectrics 321, 7–19 (2005).

    Article  CAS  Google Scholar 

  20. Wakimoto, S. et al. Mode coupling and polar nanoregions in the relaxor ferroelectric Pb(Mg1/3Nb2/3)O3 . Phys. Rev. B 66, 224102 (2002).

    Article  Google Scholar 

  21. Hlinka, J. et al. Origin of the ‘waterfall’ effect in phonon dispersions of relaxor perovskites. Phys. Rev. Lett. 91, 107602 (2003).

    Article  CAS  Google Scholar 

  22. Gehring, P. M. et al. Anomalous dispersion and thermal expansion in lightly doped KTa1−xNbxO3 . Ferroelectrics 150, 47–58 (1993).

    Article  Google Scholar 

  23. Xu, G., Hiraka, H., Ohwada, K. & Shirane, G. Dual structures in PZN-xPT ferroelectric relaxors. Appl. Phys. Lett. 84, 3975–3977 (2004).

    Article  CAS  Google Scholar 

  24. Stock, C. et al. Damped soft phonons and diffuse scattering in 40%Pb(Mg1/3Nb2/3)O3-60%PbTiO3 . Phys. Rev. B 73, 064107 (2006).

    Article  Google Scholar 

  25. Tomeno, I., Ishii, Y., Tsunoda, Y. & Oka, K. Lattice dynamics of tetragonal PbTiO3 . Phys. Rev. B 73, 064116 (2006).

    Article  Google Scholar 

  26. Toulouse, J. & Hennion, B. Inelastic-neutron-scattering study of the cubic-to-tetragonal transition in K0.965Li0.035TaO3 . Phys. Rev. B 49, 1503–1506 (1994).

    Article  CAS  Google Scholar 

  27. Fu, H. & Cohen, R. E. Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectric. Nature 403, 281–283 (2000).

    Article  CAS  Google Scholar 

  28. Wu, Z. & Cohen, R. E. Pressure induced anomalous phase transitions and colossal enhancement of piezoelectricity in PbTiO3 . Phys. Rev. Lett. 95, 037601 (2005).

    Article  Google Scholar 

  29. Budimir, M., Damjanovic, D. & Setter, N. Piezoelectric response and free-energy instability in the perovskite crystals BaTiO3, PbTiO3, and Pb(Zr,Ti)O3 . Phys. Rev. B 73, 174106 (2006).

    Article  Google Scholar 

  30. Frantti, J., Fujioka, Y. & Nieminen, R. M. Pressure-induced phase transitions in PbTiO3: A query for the polarization rotation theory. J. Phys. Chem. B 111, 4287–4290 (2007).

    Article  CAS  Google Scholar 

  31. Kutnjak, Z., Petzelt, J. & Blinc, R. The giant electromechanical response in ferroelectric relaxors as a critical phenomenon. Nature 441, 956–959 (2006).

    Article  CAS  Google Scholar 

  32. Viehland, D., Amin, A. & Li, J. F. Piezoelectric instability in 〈011〉-oriented PbB1/3′B2/3′′O3–PbTiO3 crystals. Appl. Phys. Lett. 79, 1006–1008 (2001).

    Article  CAS  Google Scholar 

  33. Gehring, P. M., Ohwada, K. & Shirane, G. Electric field effects on the diffuse scattering from Pb(Zn1/3Nb2/3)O3 doped with 8%PbTiO3 . Phys. Rev. B 70, 014110 (2004).

    Article  Google Scholar 

  34. Matsuura, M. et al. Composition dependence of diffuse scattering in the relaxor ferroelectric compound (1−x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (0<x<0.40). Phys. Rev. B 74, 144107 (2006).

    Article  Google Scholar 

  35. Koo, T. Y. et al. Anomalous transverse acoustic phonon broadening in the relaxor ferroelectric Pb(Mg1/3Nb2/3)0.8Ti0.2O3 . Phys. Rev. B 65, 144113 (2002).

    Article  Google Scholar 

  36. Pan, W. Y., Gu, W. Y., Taylor, D. J. & Cross, L. E. Large piezoelectric effect induced by direct-current bias in PMN-PT relaxor ferroelectric ceramics. Jpn. J. Appl. Phys. 1, 653–661 (1989).

    Article  Google Scholar 

  37. Noheda, B. et al. Polarization rotation via a monoclinic phase in the piezoelectric 92%PbZn1/3Nb2/3O3-8%PbTiO3 . Phys. Rev. Lett. 86, 3896–3899 (2001).

    Article  Google Scholar 

  38. Cox, D. E. et al. Universal phase diagram for high-piezoelectric perovskite systems. Appl. Phys. Lett. 79, 400–402 (2001).

    Article  CAS  Google Scholar 

  39. Noheda, B., Cox, D. E., Shirane, G., Gao, J. & Ye, Z.-G. Phase diagram of the ferroelectric relaxor (1−x)PbMg1/3Nb2/3O3-xPbTiO3 . Phys. Rev. B 66, 054104 (2002).

    Article  Google Scholar 

  40. La-Orauttapong, D. et al. Phase diagram of the relaxor ferroelectric (1−x)PbZn1/3Nb2/3O3−xPbTiO3 . Phys. Rev. B 65, 144101 (2002).

    Article  Google Scholar 

  41. Ohwada, K., Hirota, K., Rehrig, P., Fujii, Y. & Shirane, G. Neutron diffraction study of field-cooling effects on the relaxor ferroelectric Pb[(Zn1/3Nb2/3)0.92Ti0.08]O3 . Phys. Rev. B 67, 094111 (2003).

    Article  Google Scholar 

  42. Bai, F.-M. et al. X-ray and neutron diffraction investigations of the structural phase transformation sequence under electric field in 0.7PbMg1/3Nb2/3-0.3PbTiO3 crystal. J. Appl. Phys. 96, 1620–1627 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank S. M. Shapiro and J. M. Tranquada for stimulating discussions. The financial support of the US Department of Energy under contract No. DE-AC02-98CH10886 and the Natural Science and Engineering Research Council of Canada (NSERC) is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangyong Xu.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, G., Wen, J., Stock, C. et al. Phase instability induced by polar nanoregions in a relaxor ferroelectric system. Nature Mater 7, 562–566 (2008). https://doi.org/10.1038/nmat2196

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2196

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing