Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interstitial oxide ion conductivity in the layered tetrahedral network melilite structure

Abstract

High-conductivity oxide ion electrolytes are needed to reduce the operating temperature of solid-oxide fuel cells. Oxide mobility in solids is associated with defects. Although anion vacancies are the charge carriers in most cases, excess (interstitial) oxide anions give high conductivities in isolated polyhedral anion structures such as the apatites. The development of new families of interstitial oxide conductors with less restrictive structural constraints requires an understanding of the mechanisms enabling both incorporation and mobility of the excess oxide. Here, we show how the two-dimensionally connected tetrahedral gallium oxide network in the melilite structure La1.54Sr0.46Ga3O7.27 stabilizes oxygen interstitials by local relaxation around them, affording an oxide ion conductivity of 0.02–0.1 S cm−1 over the 600–900 C temperature range. Polyhedral frameworks with central elements exhibiting variable coordination number can have the flexibility needed to accommodate mobile interstitial oxide ions if non-bridging oxides are present to favour cooperative network distortions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ionic conductivity of La1.54Sr0.46Ga3O7.27 (melilite).
Figure 2: Structural relaxation around the interstitial oxide.
Figure 3: Nuclear scattering density maps from MEM analysis for La1.54Sr0.46Ga3O7.27.
Figure 4: Interstitial oxide migration pathways.

Similar content being viewed by others

References

  1. Steele, B. C. H. & Heinzel, A. Materials for fuel-cell technologies. Nature 414, 345–352 (2001).

    Article  CAS  Google Scholar 

  2. Goodenough, J. B. Oxide-ion electrolytes. Ann. Rev. Mater. Res. 33, 91–128 (2003).

    Article  CAS  Google Scholar 

  3. Boivin, J. C. & Mairesse, G. Recent material developments in fast oxide ion conductors. Chem. Mater. 10, 2870–2888 (1998).

    Article  CAS  Google Scholar 

  4. Lacorre, P., Goutenoire, F., Bohnke, O., Retoux, R. & Laligant, Y. Designing fast oxide-ion conductors based on La2Mo2O9 . Nature 404, 856–858 (2000).

    Article  CAS  Google Scholar 

  5. Boehm, E. et al. Oxygen transport properties of La2Ni1−xCuxO4+δ mixed conducting oxides. Solid State Sci. 5, 973–981 (2003).

    Article  CAS  Google Scholar 

  6. Packer, R. J. et al. Lanthanum substituted CeNbO4+δ scheelites: Mixed conductivity and structure at elevated temperatures. J. Mater. Chem. 16, 3503–3511 (2006).

    Article  CAS  Google Scholar 

  7. Yamamoto, A. et al. Rietveld analysis of the modulated structure in the superconducting oxide Bi2(Sr,Ca)3Cu2O8+x . Phys. Rev. B 42, 4228–4239 (1990).

    Article  CAS  Google Scholar 

  8. Allen, G. C., Tempest, P. A. & Tyler, J. W. Coordination model for the defect structure of hyperstoichiometric UO2+x and U4O9 . Nature 295, 48–49 (1982).

    Article  CAS  Google Scholar 

  9. Nakayama, S., Kageyama, T., Aono, H. & Sadaoka, Y. Ionic-conductivity of lanthanoid silicates, Ln10(SiO4)6O3 (Ln=La, Nd, Sm, Gd, Dy, Y, Ho, Er and Yb). J. Mater. Chem. 5, 1801–1805 (1995).

    Article  CAS  Google Scholar 

  10. Leon-Reina, L., Losilla, E. R., Martinez-Lara, M., Bruque, S. & Aranda, M. A. G. Interstitial oxygen conduction in lanthanum oxy-apatite electrolytes. J. Mater. Chem. 14, 1142–1149 (2004).

    Article  CAS  Google Scholar 

  11. Islam, M. S., Tolchard, J. R. & Slater, P. R. An apatite for fast oxide ion conduction. Chem. Commun. 1486–1487 (2003).

  12. Leon-Reina, L. et al. High oxide ion conductivity in Al-doped germanium oxyapatite. Chem. Mater. 17, 596–600 (2005).

    Article  CAS  Google Scholar 

  13. Arikawa, H., Nishiguchi, H., Ishihara, T. & Takita, Y. Oxide ion conductivity in Sr-doped La10Ge6O27 apatite oxide. Solid State Ion. 136, 31–37 (2000).

    Article  Google Scholar 

  14. Esaka, T., Minaai, T. & Iwahara, H. Oxide ion conduction in the solid-solution based on the scheelite-type oxide PbWO4 . Solid State Ion. 57, 319–325 (1992).

    Article  CAS  Google Scholar 

  15. Lacerda, M., Irvine, J. T. S., Glasser, F. P. & West, A. R. High oxide ion conductivity in Ca12Al14O33 . Nature 332, 525–526 (1988).

    Article  CAS  Google Scholar 

  16. Boysen, H., Lerch, M., Stys, A. & Senyshyn, A. Structure and oxygen mobility in mayenite (Ca12Al14O33): A high-temperature neutron powder diffraction study. Acta Crystallogr. B 63, 675–682 (2007).

    Article  CAS  Google Scholar 

  17. Sansom, J. E. H., Tolchard, J. R., Islam, M. S., Apperley, D. & Slater, P. R. Solid state Si-29 NMR studies of apatite-type oxide ion conductors. J. Mater. Chem. 16, 1410–1413 (2006).

    Article  CAS  Google Scholar 

  18. Pramana, S. S., Klooster, W. T. & White, T. J. Framework ‘interstitial’ oxygen in La10(GeO4)5(GeO5)O2 apatite electrolyte. Acta Crystallogr. B 63, 597–602 (2007).

    Article  CAS  Google Scholar 

  19. Skakle, J. M. S. & Herd, R. Crystal chemistry of (RE,A)2M3O7 compounds (RE=Y, lanthanide; A=Ba, Sr, Ca; M=Al, Ga). Powder Diffr. 14, 195–202 (1999).

    Article  CAS  Google Scholar 

  20. Huang, K. Q., Tichy, R. S. & Goodenough, J. B. Superior perovskite oxide-ion conductor; strontium- and magnesium-doped LaGaO3: I, phase relationships and electrical properties. J. Am. Ceram. Soc. 81, 2565–2575 (1998).

    Article  CAS  Google Scholar 

  21. Rozumek, M., Majewski, P., Sauter, L. & Aldinger, F. La1+xSr1−xGa3O7−δ melilite-type ceramics: Preparation, composition, and structure. J. Am. Ceram. Soc. 87, 662–669 (2004).

    Article  CAS  Google Scholar 

  22. Rozumek, M. et al. Electrical conduction behavior of La1+xSr1−xGa3O7−δ melilite-type ceramics. J. Am. Ceram. Soc. 87, 1795–1798 (2004).

    Article  CAS  Google Scholar 

  23. Raj, E. S., Skinner, S. J. & Kilner, J. A. Electrical conductivity, oxygen diffusion and surface exchange studies on a melilite-type La1.05Sr0.95Ga3O7+δ . Solid State Ion. 176, 1097–1101 (2005).

    Article  CAS  Google Scholar 

  24. Macdonald, J. R. Impedance Spectroscopy Emphasizing Solid Materials and Systems (Wiley, New York, 1987).

    Google Scholar 

  25. West, A. R., Sinclair, D. C. & Hirose, N. Characterization of electrical materials, especially ferroelectrics by impedance spectroscopy. Adv. Mater. 1, 65–71 (1997).

    CAS  Google Scholar 

  26. Tao, S. W. & Irvine, J. T. S. Preparation and characterisation of apatite-type lanthanum silicates by a sol–gel process. Mater. Res. Bull. 36, 1245–1258 (2001).

    Article  CAS  Google Scholar 

  27. Huang, K. Q., Feng, M. & Goodenough, J. B. Synthesis and electrical properties of dense Ce0.9Gd0.1O1.95 ceramics. J. Am. Ceram. Soc. 81, 357–362 (1998).

    Article  CAS  Google Scholar 

  28. Dutreilh, M., Thomas, P., Champarnaud-Mesjard, J. C. & Frit, B. Crystal structure of a new gallium tellurite: Ga2Te4O11 . Solid State Sci. 3, 423–431 (2001).

    Article  CAS  Google Scholar 

  29. Guesdon, A., Monnin, Y. & Raveau, B. A sodium gallophosphate with an original tunnel structure: NaGa2(OH)(PO4)2 . J. Solid State Chem. 172, 237–242 (2003).

    Article  CAS  Google Scholar 

  30. Xiao, D. et al. Hydrothermal synthesis and crystal structure of a three-dimensional vanadium tellurite V4Te4O18 . J. Solid State Chem. 176, 159–164 (2003).

    Article  CAS  Google Scholar 

  31. Dove, M. T. et al. Floppy modes in crystalline and amorphous silicates. Phys. Rev. Lett. 78, 1070–1073 (1997).

    Article  CAS  Google Scholar 

  32. Liu, F., Garofalini, S. H., King-Smith, R. D. & Vanderbilt, D. Structural and electronic properties of sodium metasilicate. Chem. Phys. Lett. 215, 401–404 (1993).

    Article  CAS  Google Scholar 

  33. Hesse, K. F. & Liebau, F. Crystal-chemistry of silica-rich barium silicates.1. Refinement of the crystal-structures of Ba4[Si6O16], Ba5[Si8O21] and Ba6[Si10O26], silicates with triple, quadruple and quintuple chains. Z. Kristallogr. 153, 3–17 (1980).

    CAS  Google Scholar 

  34. Fleet, M. E. & Henderson, G. S. Epsilon sodium silicate: A high-pressure layer structure Na2Si2O5 . J. Solid State Chem. 119, 400–404 (1995).

    Article  CAS  Google Scholar 

  35. Armbruster, T., Rothlisberger, F. & Seifert, F. Layer topology, stacking variation, and site distortion in melilite-related compounds in the system CaO–ZnO–GeO2–SiO2 . Am. Mineral. 75, 847–858 (1990).

    CAS  Google Scholar 

  36. Bakakin, V. V., Belov, N. V., Borisov, S. V. & Solovyeva, L. P. Crystal structure of nordite and its relationship to melilite and datolite-gadolinite. Am. Mineral. 55, 1167 (1970).

    CAS  Google Scholar 

  37. Belokoneva, E. L., Stefanovich, S. Y., Pisarevskii, Y. V. & Mosunov, A. V. Refined structures of La3Ga5SiO14 and Pb3Ga2Ge4O14 and the crystal-chemical regularities in the structure and properties of compounds of the langasite family. Russ. J. Inorg. Chem. 45, 1642–1651 (2000).

    Google Scholar 

  38. Moore, P. B. & Louisnathan, J. Fresnoite: Unusal titanium coordination. Science 156, 1361–1362 (1967).

    Article  CAS  Google Scholar 

  39. Zid, M. F. & Jouini, T. K2MoO2As2O7 . Acta Crystallogr. C 52, 1334–1336 (1996).

    Article  Google Scholar 

  40. Martin-Sedeno, M. C. et al. Structural and electrical investigation of oxide ion and proton conducting titanium cuspidines. Chem. Mater. 17, 5989–5998 (2005).

    Article  CAS  Google Scholar 

  41. Tamura, T. et al. Local structure of (Ca,Sr)2 (Mg, Co, Zn) Si2O7 melilite solid-solution with modulated structure. Phys. Chem. Min. 23, 81–88 (1996).

    Article  CAS  Google Scholar 

  42. Jia, Z. H., Schaper, A. K., Massa, W., Treutmann, W. & Rager, H. Structure and phase transitions in Ca2CoSi2O7–Ca2ZnSi2O7 solid-solution crystals. Acta Crystallogr. B 62, 547–555 (2006).

    Article  CAS  Google Scholar 

  43. Hoche, T., Russel, C. & Neumann, W. Incommensurate modulations in Ba2TiSi2O8, Sr2TiSi2O8, and Ba2TiGe2O8 . Solid State Commun. 110, 651–656 (1999).

    Article  CAS  Google Scholar 

  44. Krueger, H., Kahlenberg, V. & Friese, K. Na2Si3O7: An incommensurate structure with crenel-type modulation functions, refined from a twinned crystal. Acta Crystallogr. B 62, 440–446 (2006).

    Article  Google Scholar 

  45. Kuang, X. et al. Oxygen vacancy ordering phenomena in the mixed-conducting hexagonal perovskite Ba7Y2Mn3Ti2O20 . Chem. Mater. 19, 2884–2893 (2007).

    Article  CAS  Google Scholar 

  46. Larson, A. C. & Von Dreele, R. B. General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86-748 (2004).

  47. Izumi, F. & Dilanian, R. A. Recent Research Developments in Physics, Part II Vol. 3, 699–726 (Transworld Research Network, Trivandrum, 2002).

    Google Scholar 

  48. Izumi, F. & Ikeda, T. A Rietveld-analysis programm RIETAN-98 and its applications to zeolites. Mater. Sci. Forum 321–324, 198–203 (2000).

    Article  Google Scholar 

  49. Momma, K. & Izumi, F. An integrated three-dimensional visualization system VESTA using wxWidgets. Commission on Crystallogr. Comput., IUCr Newslett. 7, 106–119 (2006).

    Google Scholar 

Download references

Acknowledgements

We would like to thank Stephen Apter (Department of Chemistry, The University of Liverpool) for ICP elemental analysis, S. Poulton (NIST) for assistance with the neutron diffraction experiments and M. Roberts (SRS) for help with the synchrotron X-ray diffraction experiment. We thank EPSRC (EP/C511794) and the EU (FAME Network of Excellence) for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew J. Rosseinsky.

Supplementary information

Supplementary Information, Fig. S1

Supplementary Figures S1–S16, Supplementary Tables S1–S9 and Supplementary Sections 5 & 10 (PDF 3507 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuang, X., Green, M., Niu, H. et al. Interstitial oxide ion conductivity in the layered tetrahedral network melilite structure. Nature Mater 7, 498–504 (2008). https://doi.org/10.1038/nmat2201

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2201

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing