Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Probing the structure of heterogeneous diluted materials by diffraction tomography

Abstract

The advent of nanosciences calls for the development of local structural probes, in particular to characterize ill-ordered or heterogeneous materials. Furthermore, because materials properties are often related to their heterogeneity and the hierarchical arrangement of their structure, different structural probes covering a wide range of scales are required1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23. X-ray diffraction is one of the prime structural methods but suffers from a relatively poor detection limit, whereas transmission electron analysis involves destructive sample preparation. Here we show the potential of coupling pencil-beam tomography with X-ray diffraction to examine unidentified phases in nanomaterials and polycrystalline materials. The demonstration is carried out on a high-pressure pellet containing several carbon phases24 and on a heterogeneous powder containing chalcedony and iron pigments. The present method enables a non-invasive structural refinement with a weight sensitivity of one part per thousand. It enables the extraction of the scattering patterns of amorphous and crystalline compounds with similar atomic densities and compositions. Furthermore, such a diffraction-tomography experiment can be carried out simultaneously with X-ray fluorescence, Compton and absorption tomographies6, enabling a multimodal analysis of prime importance in materials science, chemistry, geology, environmental science, medical science, palaeontology and cultural heritage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diffraction–tomography direct analysis.
Figure 2: Diffraction–tomography reverse analysis.
Figure 3: Diffraction–tomography set-up for a multimodal analysis.
Figure 4: Phase-selective powder patterns and images.

Similar content being viewed by others

References

  1. Manceau, A. et al. Deciphering Ni sequestration in soil ferromanganese nodules by combining X-ray fluorescence, absorption, and diffraction at micrometer scales of resolution. Am. Mineral. 87, 1494–1499 (2002).

    Article  CAS  Google Scholar 

  2. Dooryhée, E. et al. Non-destructive synchrotron X-ray diffraction mapping of a Roman painting. Appl. Phys. A 81, 663–667 (2005).

    Article  Google Scholar 

  3. Welcomme, E. et al. Classification of lead white pigments using synchrotron radiation micro X-ray diffraction. Appl. Phys. A 89, 825–832 (2007).

    Article  CAS  Google Scholar 

  4. Harding, G., Kosanetsky, J. & Neitzel, U. Elastic scatter computed tomography. Phys. Med. Biol. 30, 183–186 (1985).

    Article  CAS  Google Scholar 

  5. Harding, G., Kosanetsky, J. & Neitzel, U. X-ray diffraction computed tomography. Med. Phys. 14, 515–525 (1987).

    Article  CAS  Google Scholar 

  6. Kleuker, U., Suortti, P., Weyrich, W. & Spanne, P. Feasibility study of x-ray diffraction computed tomography for medical imaging. Phys. Med. Biol. 43, 2911–2923 (1998).

    Article  CAS  Google Scholar 

  7. Cloetens, P. et al. Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays. Appl. Phys. Lett. 75, 2912–2914 (1999).

    Article  CAS  Google Scholar 

  8. Golosio, B. et al. Nondestructive three-dimensional elemental microanalysis by combined helical x-ray microtomographies. Appl. Phys. Lett. 84, 2199–2201 (2003).

    Article  Google Scholar 

  9. Kim, S. A. et al. Localization of iron in arabidopsis seed requires the vacuolar membrane transporter VIT1. Science 314, 1295–1298 (2006).

    Article  CAS  Google Scholar 

  10. Larivière, P. J. & Vargas, P. A. Monotonic penalized-likelihood image reconstruction for X-ray fluorescence computed tomography. IEEE Trans. Med. Imaging 25, 1117–1129 (2006).

    Article  Google Scholar 

  11. Schroer, C. G. Reconstructing x-ray fluorescence microtomograms. Appl. Phys. Lett. 79, 1912–1914 (2001).

    Article  CAS  Google Scholar 

  12. Golosio, B., Brunetti, A. & Cesaero, R. Algorithmic techniques for quantitative Compton tomography. Nucl. Instrum. Methods B 213, 108–111 (2004).

    Article  CAS  Google Scholar 

  13. Schroer, C. G. et al. Mapping the local nanostructure inside a specimen by tomographic small-angle x-ray scattering. Appl. Phys. Lett. 88, 164102 (2006).

    Article  Google Scholar 

  14. Nielsen, S. F. et al. A conical slit for three-dimensional XRD mapping. J. Synchrotron Radiat. 7, 103–109 (2000).

    Article  CAS  Google Scholar 

  15. Poulsen, H. F., Jensen, D. J. & Vaughan, G. B. M. Three-dimensional X-ray diffraction microscopy using high-energy X-rays. Mater. Res. 29, 166–169 (2004).

    CAS  Google Scholar 

  16. Tamura, N. et al. High spatial resolution grain orientation and strain mapping in thin films using polychromatic submicron x-ray diffraction. Appl. Phys. Lett. 80, 3724–3726 (2002).

    Article  CAS  Google Scholar 

  17. Budai, J. D. et al. X-ray microdiffraction study of growth modes and crystallographic tilts in oxide films on metal substrates. Nature Mater. 2, 487–492 (2003).

    Article  CAS  Google Scholar 

  18. Larson, B. C., Yang, W., Ice, G. E., Budai, J. D. & Tischler, J. Z. Three-dimensional X-ray structural microscopy with submicrometre resolution. Nature 415, 887–890 (2002).

    Article  CAS  Google Scholar 

  19. Ludwig, W. et al. Three-dimensional imaging of crystal defects by ‘topo-tomography’. J. Appl. Cryst. 34, 602–607 (2001).

    Article  CAS  Google Scholar 

  20. Ludwig, W., Lauridsen, E. M., Schmidt, S., Poulsen, H. F. & Baruchel, J. High-resolution three-dimensional mapping of individual grains in polycrystals by topotomography. J. Appl. Cryst. 40, 905–911 (2007).

    Article  CAS  Google Scholar 

  21. Miao, J. et al. Three-dimensional GaN–Ga2O3 core shell structure revealed by X-ray diffraction microscopy. Phys. Rev. Lett. 97, 215503 (2006).

    Article  Google Scholar 

  22. Pfeifer, M. A. et al. Three-dimensional mapping of a deformation field inside a nanocrystal. Nature 442, 63–66 (2006).

    Article  CAS  Google Scholar 

  23. Miao, J., Ishikawa, T., Shen, Q. & Earnest, T. Extending the methodology of X-ray crystallography to allow structure determination of non-crystalline materials, whole cells and single macromolecular complexes (invited review). Annu. Rev. Phys. Chem. 59, 24–27 (2008).

    Article  Google Scholar 

  24. Nunez-Regueiro, M., Monceau, P. & Hodeau, J.-L. Crushing C60 to diamond at room temperature. Nature 355, 237–239 (1992).

    Article  CAS  Google Scholar 

  25. Hodeau, J.-L. et al. High-pressure transformations of C60 to diamond and s p3 phases at room temperature and to s p2 phases at high temperature. Phys. Rev. B 50, 10311–10314 (1994).

    Article  CAS  Google Scholar 

  26. Marques, L. et al. Debye–Scherrer ellipses from 3D fullerene polymers: An anisotropic pressure memory signature. Science 283, 1720–1723 (1999).

    Article  CAS  Google Scholar 

  27. Sole, V. A., Papillon, E., Cotte, M., Walter, P. & Susini, J. A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochim. Acta B 62, 63–68 (2007).

    Article  Google Scholar 

  28. Pouget, E. et al. Hierarchical architectures by synergy between dynamical template self-assembly and biomineralization. Nature Mater. 6, 434–439 (2007).

    Article  CAS  Google Scholar 

  29. Natterer, F. & Wübbeling, F. Mathematical Methods in Image Reconstruction 110 (SIAM, Philadelphia, 2001).

    Book  Google Scholar 

  30. Somogyi, A. et al. ID22: A multitechnique hard X-ray microprobe beamline at the European Synchrotron Radiation Facility. J. Synchrotron Radiat. 12, 208–215 (2004).

    Article  Google Scholar 

  31. Etherington, G., Wright, A. C. & Wenzel, J. T. A neutron-diffraction study of the structure of evaporated amorphous-germanium. J. Non-Cryst. Solids 48, 265–278 (1982).

    Article  CAS  Google Scholar 

  32. Wright, A. C. et al. The structure of some simple amorphous network solids revisited. J. Non-Cryst. Solids 129, 213–232 (1991).

    Article  CAS  Google Scholar 

  33. Labiche, J.-C. et al. The fast readout low noise camera as a versatile x-ray detector for time resolved dispersive extended x-ray absorption fine structure and diffraction studies of dynamic problems in materials science, chemistry, and catalysis. Rev. Sci. Instrum. 78, 091301 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank M. Nunez-Regueiro and L. Marques for sample synthesis, discussions and suggestions. The authors are also grateful to R. Tucoulou, S. Labouré, C. Guilloud, M. Soulier, Y. Dabin, C. Nemoz, J.-C. Labiche, A. Sole and the support groups of the ESRF for their help during experiments. This study was funded by grants from ESRF (LTP CH-1777).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Louis Hodeau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bleuet, P., Welcomme, E., Dooryhée, E. et al. Probing the structure of heterogeneous diluted materials by diffraction tomography. Nature Mater 7, 468–472 (2008). https://doi.org/10.1038/nmat2168

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2168

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing