Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A zeolite family with chiral and achiral structures built from the same building layer

Abstract

Porosity and chirality are two of the most important properties for materials in the chemical and pharmaceutical industry. Inorganic microporous materials such as zeolites have been widely used in ion-exchange, selective sorption/separation and catalytic processes. The pore size and shape in zeolites play important roles for specific applications1,2,3. Chiral inorganic microporous materials are particularly desirable with respect to their possible use in enantioselective sorption, separation and catalysis4. At present, among the 179 zeolite framework types reported, only three exhibit chiral frameworks5,6,7. Synthesizing enantiopure, porous tetrahedral framework structures represents a great challenge for chemists. Here, we report the silicogermanates SU-32 (polymorph A), SU-15 (polymorph B) (SU, Stockholm University) and a hypothetical polymorph C, all built by different stacking of a novel building layer. Whereas polymorphs B and C are achiral, each crystal of polymorph A exhibits only one hand and has an intrinsically chiral zeolite structure. SU-15 and SU-32 are thermally stable on calcination.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Building layer arrangements in SU-15 and SU-32.
Figure 2: The helical channels in SU-32.
Figure 3: Framework structures shown as T–T connections and their underlying nets.
Figure 4: A hypothetical zeolite framework of the zeolite family, polymorph C (space group C 2/c), built from the same layer.

Similar content being viewed by others

References

  1. Davis, M. E. Ordered porous materials for emerging applications. Nature 417, 813–821 (2002).

    Article  CAS  Google Scholar 

  2. Corma, A. J. State of the art and future challenges of zeolites as catalysts. J. Catal. 216, 298–312 (2003).

    Article  CAS  Google Scholar 

  3. Férey, G. Materials science: The simplicity of complexity—rational design of giant pores. Science 291, 994–995 (2001).

    Article  Google Scholar 

  4. Davis, M. E. Reflections on routes to enantioselective solid catalysts. Top. Catal. 25, 3–7 (2003).

    Article  CAS  Google Scholar 

  5. Harrison, W. T. A., Gier, T. E., Stucky, G. D., Broach, R. W. & Bedard, R. A. NaZnPO4·H2O, an open-framework sodium zincophosphate with a new chiral tetrahedral framework topology. Chem. Mater. 8, 145–151 (1996).

    Article  CAS  Google Scholar 

  6. Rouse, R. C. & Peacor, D. R. Crystal structure of the zeolite mineral goosecreekite, CaAl2Si6O16·5H2O. Am. Mineral. 71, 1494–1501 (1986).

    CAS  Google Scholar 

  7. Cheetham, A. K. et al. Very open microporous materials: From concept to reality. Stud. Surf. Sci. Catal. 135, 158 (2001).

    Article  Google Scholar 

  8. Davis, M. E. & Lobo, R. F. Zeolite and molecular sieve synthesis. Chem. Mater. 4, 756–768 (1992).

    Article  CAS  Google Scholar 

  9. Gray, M. J., Jasper, J. D., Wilkinson, A. P. & Hanson, J. C. Synthesis and synchrotron microcrystal structure of an aluminophosphate with chiral layers containing Λ tris(ethylenediamine) cobalt(III). Chem. Mater. 9, 976–980 (1997).

    Article  CAS  Google Scholar 

  10. Wang, Y., Yu, J., Li, Y., Shi, Z. & Xu, R. Chirality transfer from guest chiral metal complexes to inorganic framework: The role of hydrogen bonding. Chem. Eur. J. 9, 5048–5055 (2003).

    Article  CAS  Google Scholar 

  11. Yu, J., Wang, Y., Shi, Z. & Xu, R. Hydrothermal synthesis and characterization of two new zinc phosphates assembled about a chiral metal complex: [CoII(en)3]2[Zn6P8O32H8] and [CoIII(en)3][Zn8P6O24Cl]·2H2O. Chem. Mater. 13, 2972–2978 (2001).

    Article  CAS  Google Scholar 

  12. Lin, Z., Slawin, A. M. Z. & Morris, R. E. Chiral induction in the ionthermal synthesis of a 3-D coordination polymer. J. Am. Chem. Soc. 129, 4880–4881 (2007).

    Article  CAS  Google Scholar 

  13. Treacy, M. M. J. & Newsam, J. M. Two new three-dimensional twelve-ring zeolite frameworks of which zeolite beta is a disordered intergrowth. Nature 332, 249–251 (1988).

    Article  CAS  Google Scholar 

  14. Newsam, J. M., Treacy, M. M. J., Koestsier, W. T. & de Gruyter, C. B. Structural characterization of zeolite beta. Proc. R. Soc. Lond. A 420, 375–405 (1988).

    Article  CAS  Google Scholar 

  15. Higgins, J. B. et al. The framework topology of zeolite beta. Zeolites 8, 446–552 (1988).

    Article  CAS  Google Scholar 

  16. Conradsson, T., Dadachov, M. S. & Zou, X. D. Synthesis and structure of (Me3N)6[Ge32O64]·4.5H2O, a thermally stable novel zeotype with 3D interconnected 12-ring channels. Micropor. Mesopor. Mater. 41, 183–191 (2000).

    Article  CAS  Google Scholar 

  17. Corma, A., Navarro, M. T., Rey, F., Rius, J. & Valencia, S. Pure polymorph C of zeolite beta synthesized by using framework isomorphous substitution as a structure-directing mechanism. Angew. Chem. Int. Ed. 40, 2277–2280 (2001).

    Article  CAS  Google Scholar 

  18. Wagner, P. et al. Guest/host relationships in the synthesis of the novel cage-based zeolites SSZ-35, SSZ-36, and SSZ-39. J. Am. Chem. Soc. 122, 263–273 (2000).

    Article  CAS  Google Scholar 

  19. Lobo, R. F. et al. SSZ-26 and SSZ-33: Two molecular sieves with intersecting 10- and 12-ring pores. Science 262, 1543–1546 (1993).

    Article  CAS  Google Scholar 

  20. Treacy, M. M. J., Vaughan, D. E. W., Strohmaier, K. G. & Newsam, J. M. Intergrowth segregation in FAU-EMT framework materials. Proc. R. Soc. Lond. A 452, 813–840 (1996).

    Article  CAS  Google Scholar 

  21. Cantin, A. et al. Synthesis and characterization of the all-silica pure polymorph C and enriched polymorph B intergrowth of zeolite beta. Angew. Chem. Int. Ed. 45, 8013–8015 (2006).

    Article  CAS  Google Scholar 

  22. Delgado-Friedrichs, O. SYSTRE: A program for SYmmetry, STructure (recognition) and REfinement. <http://www.gavrog.org> (2006).

  23. Caullet, P., Guth, J. L., Hazm, J., Lamblin, J. M. & Gies, H. Synthesis, characterization and crystal structure of the new clathrasil phase octadecasil. Eur. J. Solid State Inorg. Chem. 28, 345–361 (1991).

    CAS  Google Scholar 

  24. Bennett, J. M. & Kirchner, R. M. The structure of as-synthesized AlPO4-16 determined by a new framework modelling method and Rietveld refinement of synchrotron powder diffraction data. Zeolites 11, 502–506 (1991).

    Article  CAS  Google Scholar 

  25. Wang, Y. X., Song, J. Q. & Gies, H. The substitution of germanium for silicon in AST-type zeolite. Solid State Sci. 5, 1421–1433 (2003).

    Article  CAS  Google Scholar 

  26. Gale, J. D. GULP: A computer program for the symmetry-adapted simulation of solids. J. Chem. Soc. Faraday Trans. 93, 629–637 (1997).

    Article  CAS  Google Scholar 

  27. Sanders, M. J., Leslie, M. & Catlow, C. R. A. Interatomic potentials for SiO2 . J. Chem. Soc. Chem. Commun. 1271–1273 (1984).

  28. Foster, M. D., Delgado-Friedrichs, O., Bell, R. G., Paz, F. A. A. & Klinowski, J. Chemical evaluation of hypothetical uninodal zeolites. J. Am. Chem. Soc. 126, 9769–9775 (2004).

    Article  CAS  Google Scholar 

  29. Foster, M. D. et al. Chemically feasible hypothetical crystalline networks. Nature Mater. 3, 234–238 (2004).

    Article  CAS  Google Scholar 

  30. Sastre, G. & Gale, J. D. Derivation of an interatomic potential for germanium and silicon-containing zeolites and its application to the study of the structures of octadecasil, ASU-7, and ASU-9 materials. Chem. Mater. 15, 1788–1796 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank M. O’Keeffe and J. Yu for help and valuable discussions, R. Herbst-Irmer for help with the twinning problem of SU-15, and K. Jansson for assistance with SEM. This project is supported by the Swedish Research Council (VR) and the Swedish Governmental Agency for Innovation Systems (VINNOVA). L.S., C.B. and J.-L.S. are supported by post-doctoral grants from the Wenner-Gren Foundation and Carl-Trygger Foundation, respectively.

Author information

Authors and Affiliations

Authors

Contributions

L.-Q.T., L.S., H.-J.Y., A.O. and B.-L.L. synthesized the samples. L.-Q.T., L.S., J.-L.S. and M.K. carried out the characterization and crystallographic studies. C.B. and J.-L.S. carried out the topology analysis and geometry optimization. R.G.B. carried out the energy calculations. Z.B. and J.M. carried out the infrared microscopy. C.B. and X.-D.Z. wrote the major part of the manuscript. X.-D.Z. was responsible for project planning and coordination.

Corresponding author

Correspondence to Xiaodong Zou.

Supplementary information

Supplementary Information, Fig. S1

Supplementary Figures S1–S8 and Supplementary Tables S1–S8 (PDF 771 kb)

Supplementary Movie (AVI 25289 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, L., Shi, L., Bonneau, C. et al. A zeolite family with chiral and achiral structures built from the same building layer. Nature Mater 7, 381–385 (2008). https://doi.org/10.1038/nmat2169

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2169

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing