Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Biofunctional polymer nanoparticles for intra-articular targeting and retention in cartilage

Abstract

The extracellular matrix of dense, avascular tissues presents a barrier to entry for polymer-based therapeutics, such as drugs encapsulated within polymeric particles. Here, we present an approach by which polymer nanoparticles, sufficiently small to enter the matrix of the targeted tissue, here articular cartilage, are further modified with a biomolecular ligand for matrix binding. This combination of ultrasmall size and biomolecular binding converts the matrix from a barrier into a reservoir, resisting rapid release of the nanoparticles and clearance from the tissue site. Phage display of a peptide library was used to discover appropriate targeting ligands by biopanning on denuded cartilage. The ligand WYRGRL was selected in 94 of 96 clones sequenced after five rounds of biopanning and was demonstrated to bind to collagen II α1. Peptide-functionalized nanoparticles targeted articular cartilage up to 72-fold more than nanoparticles displaying a scrambled peptide sequence following intra-articular injection in the mouse.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phage amplification and competitive binding showing that C1–3 was selected owing to its specificity of binding to the cartilage matrix.
Figure 2: Competitive and sequence-specific binding of WYRGRL.
Figure 3: Characterization of peptide-conjugated nanoparticles.
Figure 4: In vivo targeting of WYRGRL–PPS nanoparticles.
Figure 5: Quantification of nanoparticles in the ECM and within the cells.
Figure 6: Size-dependent matrix accumulation of WYRGRL–PPS after 24 h.

Similar content being viewed by others

References

  1. Bae, Y. et al. Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: Tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjug. Chem. 16, 122–130 (2005).

    Article  CAS  Google Scholar 

  2. Dreher, M. R. et al. Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J. Natl Cancer Inst. 98, 335–344 (2006).

    Article  CAS  Google Scholar 

  3. Duncan, R. The dawning era of polymer therapeutics. Nature Rev. Drug. Discov. 2, 347–360 (2003).

    Article  CAS  Google Scholar 

  4. Shiah, J. J., Sun, Y., Peterson, C. M. & Kopecek, J. Biodistribution of free and N-(2-hydroxypropyl)methacrylamide copolymer-bound mesochlorin e(6) and adriamycin in nude mice bearing human ovarian carcinoma OVCAR-3 xenografts. J. Control Release 61, 145–157 (1999).

    Article  CAS  Google Scholar 

  5. Owen, S. G., Francis, H. W. & Roberts, M. S. Disappearance kinetics of solutes from synovial fluid after intra-articular injection. Br. J. Clin. Pharmacol. 38, 349–355 (1994).

    Article  CAS  Google Scholar 

  6. Comper, W. D. in Cartilage: Molecular Aspects (eds Hall, B. & Newman, S.) 59–96 (CRC Press, Boston, 1991).

    Google Scholar 

  7. Torzilli, P. A., Arduino, J. M., Gregory, J. D. & Bansal, M. Effect of proteoglycan removal on solute mobility in articular cartilage. J. Biomech. 30, 895–902 (1997).

    Article  CAS  Google Scholar 

  8. Arap, W. et al. Steps toward mapping the human vasculature by phage display. Nature Med. 8, 121–127 (2002).

    Article  CAS  Google Scholar 

  9. Kay, B. K., Kasanov, J. & Yamabhai, M. Screening phage-displayed combinatorial peptide libraries. Methods 24, 240–246 (2001).

    Article  CAS  Google Scholar 

  10. Kolonin, M. G. et al. Synchronous selection of homing peptides for multiple tissues by in vivo phage display. FASEB J. 20, 979–981 (2006).

    Article  CAS  Google Scholar 

  11. Pasqualini, R. & Ruoslahti, E. Organ targeting in vivo using phage display peptide libraries. Nature 380, 364–366 (1996).

    Article  CAS  Google Scholar 

  12. Smith, G. P. & Petrenko, V. A. Phage display. Chem. Rev. 97, 391–410 (1997).

    Article  CAS  Google Scholar 

  13. Cherney, R. J. et al. Potent and selective aggrecanase inhibitors containing cyclic P1 substituents. Bioorg. Med. Chem. Lett. 13, 1297–1300 (2003).

    Article  CAS  Google Scholar 

  14. Noe, M. C. et al. Discovery of 3,3-dimethyl-5-hydroxypipecolic hydroxamate-based inhibitors of aggrecanase and MMP-13. Bioorg. Med. Chem. Lett. 15, 2808–2811 (2005).

    Article  CAS  Google Scholar 

  15. Noe, M. C. et al. Discovery of 3-OH-3-methylpipecolic hydroxamates: Potent orally active inhibitors of aggrecanase and MMP-13. Bioorg. Med. Chem. Lett. 15, 3385–3388 (2005).

    Article  CAS  Google Scholar 

  16. Noe, M. C. et al. 3-Hydroxy-4-arylsulfonyltetrahydropyranyl-3-hydroxamic acids are novel inhibitors of MMP-13 and aggrecanase. Bioorg. Med. Chem. Lett. 14, 4727–4730 (2004).

    Article  CAS  Google Scholar 

  17. Yao, W. et al. Design and synthesis of a series of (2R)-N(4)-hydroxy-2-(3-hydroxybenzyl)-N(1)-[(1S,2R)-2-hydroxy-2, 3-dihydro-1H-inden-1-yl]butanediamide derivatives as potent, selective, and orally bioavailable aggrecanase inhibitors. J. Med. Chem. 44, 3347–3350 (2001).

    Article  CAS  Google Scholar 

  18. Rehor, A., Hubbell, J. A. & Tirelli, N. Oxidation-sensitive polymeric nanoparticles. Langmuir 21, 411–417 (2005).

    Article  CAS  Google Scholar 

  19. Rehor, A. Poly(propylene sulfide) Nanoparticles as Drug Carriers. Thesis, Swiss Federal Institute of Technology (2005).

  20. Wieland, H. A., Michaelis, M., Kirschbaum, B. J. & Rudolphi, K. A. Osteoarthritis—an untreatable disease? Nature Rev. Drug. Discov. 4, 331–344 (2005).

    Article  CAS  Google Scholar 

  21. Zacher, A. N. 3rd, Stock, C. A., Golden, J. W. 2nd & Smith, G. P. A new filamentous phage cloning vector: fd-tet. Gene 9, 127–140 (1980).

    Article  CAS  Google Scholar 

  22. Lutolf, M. P. & Hubbell, J. A. Synthesis and physicochemical characterization of end-linked poly(ethylene glycol)-co-peptide hydrogels formed by Michael-type addition. Biomacromolecules 4, 713–722 (2003).

    Article  CAS  Google Scholar 

  23. Boder, E. T. & Wittrup, K. D. Yeast surface display for screening combinatorial polypeptide libraries. Nature Biotechnol. 15, 553–557 (1997).

    Article  CAS  Google Scholar 

  24. Xu, L. et al. Directed evolution of high-affinity antibody mimics using mRNA display. Chem. Biol. 9, 933–942 (2002).

    Article  CAS  Google Scholar 

  25. Lam, K. S., Lebl, M. & Krchnak, V. The “one-bead-one-compound” combinatorial library method. Chem. Rev. 97, 411–448 (1997).

    Article  CAS  Google Scholar 

  26. Madry, H., Cucchiarini, M., Terwilliger, E. F. & Trippel, S. B. Recombinant adeno-associated virus vectors efficiently and persistently transduce chondrocytes in normal and osteoarthritic human articular cartilage. Hum. Gene Ther. 14, 393–402 (2003).

    Article  CAS  Google Scholar 

  27. Gao, H., Shi, W. & Freund, L. B. Mechanics of receptor-mediated endocytosis. Proc. Natl Acad. Sci. USA 102, 9469–9474 (2005).

    Article  CAS  Google Scholar 

  28. Lynch, I., Dawson, K. A. & Linse, S. Detecting cryptic epitopes created by nanoparticles. Sci. STKE 2006, pe14 (2006).

    Google Scholar 

  29. Nagayama, S. et al. Fetuin mediates hepatic uptake of negatively charged nanoparticles via scavenger receptor. Int. J. Pharm. 329, 192–198 (2007).

    Article  CAS  Google Scholar 

  30. Guilak, F. et al. The pericellular matrix as a transducer of biomechanical and biochemical signals in articular cartilage. Ann. NY Acad. Sci. 1068, 498–512 (2006).

    Article  CAS  Google Scholar 

  31. Phillips, N. C., Thomas, D. P., Knight, C. G. & Dingle, J. T. Liposome-incorporated corticosteroids. II. Therapeutic activity in experimental arthritis. Ann. Rheum. Dis. 38, 553–557 (1979).

    Article  CAS  Google Scholar 

  32. Shaw, I. H., Knight, C. G., Thomas, D. P., Phillips, N. C. & Dingle, J. T. Liposome-incorporated corticosteroids: I. The interaction of liposomal cortisol palmitate with inflammatory synovial membrane. Br. J. Exp. Pathol. 60, 142–150 (1979).

    CAS  Google Scholar 

  33. Ratcliffe, J. H., Hunneyball, I. M., Smith, A., Wilson, C. G. & Davis, S. S. Preparation and evaluation of biodegradable polymeric systems for the intra-articular delivery of drugs. J. Pharm. Pharmacol. 36, 431–436 (1984).

    Article  CAS  Google Scholar 

  34. Ratcliffe, J. H., Hunneyball, I. M., Wilson, C. G., Smith, A. & Davis, S. S. Albumin microspheres for intra-articular drug delivery: Investigation of their retention in normal and arthritic knee joints of rabbits. J. Pharm. Pharmacol. 39, 290–295 (1987).

    Article  CAS  Google Scholar 

  35. Tuncay, M. et al. In vitro and in vivo evaluation of diclofenac sodium loaded albumin microspheres. J. Microencapsul. 17, 145–155 (2000).

    Article  CAS  Google Scholar 

  36. Horisawa, E. et al. Prolonged anti-inflammatory action of DL-lactide/glycolide copolymer nanospheres containing betamethasone sodium phosphate for an intra-articular delivery system in antigen-induced arthritic rabbit. Pharm. Res. 19, 403–410 (2002).

    Article  CAS  Google Scholar 

  37. Horisawa, E. et al. Size-dependency of DL-lactide/glycolide copolymer particulates for intra-articular delivery system on phagocytosis in rat synovium. Pharm. Res. 19, 132–139 (2002).

    Article  CAS  Google Scholar 

  38. Quinn, T. M., Morel, V. & Meister, J. J. Static compression of articular cartilage can reduce solute diffusivity and partitioning: Implications for the chondrocyte biological response. J. Biomech. 34, 1463–1469 (2001

    Article  CAS  Google Scholar 

  39. Quinn, T. M., Kocian, P. & Meister, J. J. tatic compression is associated with decreased diffusivity of dextrans in cartilage explants. Arch. Biochem. Biophys. 384, 327–334 (2000

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank V. Garea and M. Pasquier for the help with the animal work and histology, A. Rehor for help with and discussions on initial nanoparticle synthesis, R. Schoenmakers for peptide synthesis, A. van der Vlies for obtaining 1H-NMR spectra, and especially the BIOP core facility for their support in establishing the imaging and quantification protocol and the proteomics core facility for running mass spectrometry analyses, and M. Lütolf for his help and suggestions in preparing the manuscript. DAR was supported by a grant from the Hans-Neuenschwander-Stiftung, Berne.

Author information

Authors and Affiliations

Authors

Contributions

The experiments have been designed by D.A.R. and J.A.H. and carried out by D.A.R. H.B. introduced phage display and aided in establishing initial protocols. C.P.O. assisted in the affinity purification. The manuscript was written by D.A.R. and J.A.H. Principal investigator is J.A.H.

Corresponding author

Correspondence to Jeffrey A. Hubbell.

Ethics declarations

Competing interests

The EPFL has filed an application for a patent on the technology described in this manuscript, of which D.A.R. and J.A.H. are inventors.

Supplementary information

Supplementary Information, Table S1

Supplementary Table S1 and Supplementary figures S1-S3 (PDF 343 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rothenfluh, D., Bermudez, H., O’Neil, C. et al. Biofunctional polymer nanoparticles for intra-articular targeting and retention in cartilage. Nature Mater 7, 248–254 (2008). https://doi.org/10.1038/nmat2116

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2116

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing