Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Collapse of magnetic moment drives the Mott transition in MnO

Abstract

The metal–insulator transition in correlated electron systems, where electron states transform from itinerant to localized, has been one of the central themes of condensed-matter physics for more than half a century. The persistence of this question has been a consequence both of the intricacy of the fundamental issues and the growing recognition of the complexities that arise in real materials, when strong repulsive interactions play the primary role. The initial concept of Mott was based on the relative importance of kinetic hopping (measured by the bandwidth) and onsite repulsion of electrons. Real materials, however, have many further degrees of freedom that, as is recently attracting note, give rise to a rich variety of scenarios for a ‘Mott transition’. Here, we report results for the classic correlated insulator MnO that reproduce a simultaneous moment collapse, volume collapse and metallization transition near the observed pressure, and identify the mechanism as collapse of the magnetic moment due to an increase of crystal-field splitting, rather than to variation in the bandwidth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Evolution of the local magnetic moment and Mn 3d occupancies with volume.
Figure 2: Ambient-pressure X-ray photoemission spectroscopy and bremsstrahlung isochromat spectroscopy data of van Elp et al.29 on both sides of the energy gap for MnO.
Figure 3: View of the evolution of the Mn 3d spectral densities under pressure.
Figure 4: Schematic energy diagrams of the spin states at both ambient pressure and at high pressure in the collapsed phase.
Figure 5: Two representations of the equation of state that quantifies the volume collapse transition.

Similar content being viewed by others

References

  1. Mott, N. F. The Basis of the electron theory of metals, with special reference to the transition metals. Proc. Phys. Soc. Lond. A 62, 416–422 (1949).

    Article  Google Scholar 

  2. Mott, N. F. Metal–insulator transition. Rev. Mod. Phys. 40, 677–683 (1968).

    Article  CAS  Google Scholar 

  3. Imada, M., Fujimori, A. & Tokura, Y. Metal–insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998).

    Article  CAS  Google Scholar 

  4. Saitoh, T., Bouquet, A. E., Mizokawa, T. & Fujimori, A. Systematic variation of the electronic structure of 3d transition-metal compounds. Phys. Rev. B 52, 7934–7938 (1995).

    Article  CAS  Google Scholar 

  5. Noguchi, Y., Kusaba, K., Fukuoka, K. & Syono, Y. Shock-induced phase transition of MnO around 90 GPa. Geophys. Res. Lett. 23, 1469–1472 (1996).

    Article  CAS  Google Scholar 

  6. Mita, Y. et al. Optical study of MnO under pressure. Phys. Status Solidi B 223, 247–251 (2001).

    Article  CAS  Google Scholar 

  7. Mita, Y., Izaki, D., Kobayashi, M. & Endo, S. Pressure-induced metallization of MnO. Phys. Rev. B 71, 100101 (2005).

    Article  Google Scholar 

  8. Patterson, J. R. et al. Pressure-induced metallization of the Mott insulator MnO. Phys. Rev. B 69, 220101 (2004).

    Article  Google Scholar 

  9. Yoo, C. S. et al. First-order isostructural Mott transition in highly compressed MnO. Phys. Rev. Lett. 94, 115502 (2005).

    Article  CAS  Google Scholar 

  10. Rueff, J.-P., Mattila, A., Badro, J., Vankò, G. & Shukla, A. Electronic properties of transition-metal oxides under high pressure revealed by X-ray emission spectroscopy. J. Phys. Condens. Matter 17, S717–S726 (2005).

    Article  CAS  Google Scholar 

  11. Metzner, W. & Vollhardt, D. Correlated lattice fermions in dimensions. Phys. Rev. Lett. 62, 324–327 (1989).

    Article  CAS  Google Scholar 

  12. Georges, A., Kotliar, G., Krauth, W. & Rozenberg, M. J. Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys. 68, 13–125 (1996).

    Article  CAS  Google Scholar 

  13. Kotliar, G. & Vollhardt, D. Strongly correlated materials: Insights from dynamical mean-field theory. Phys. Today 57, 53–59 (2004).

    Article  CAS  Google Scholar 

  14. Lichtenstein, A. I. & Katsnelson, M. I. Ab initio calculations of quasiparticle band structure in correlated systems: LDA++ approach. Phys. Rev. B 57, 6884–6895 (1998).

    Article  CAS  Google Scholar 

  15. Held, K., McMahan, A. K. & Scalettar, R. T. Cerium volume collapse: Results from the merger of dynamical mean-field theory and local density approximation. Phys. Rev. Lett. 87, 276404 (2001).

    Article  CAS  Google Scholar 

  16. Savrasov, S., Kotliar, G. & Abrahams, E. Electronic correlations in metallic plutonium within dynamical mean-field picture. Nature 410, 793–795 (2001).

    Article  CAS  Google Scholar 

  17. Held, K., Keller, G., Eyert, V., Vollhardt, D. & Anisimov, V. I. Mott-Hubbard metal–insulator transition in paramagnetic V2O3: An LDA+DMFT(QMC) study. Phys. Rev. Lett. 86, 5345–5348 (2001).

    Article  CAS  Google Scholar 

  18. Georges, A. Strongly correlated electron materials: Dynamical mean field theory and electronic structure. AIP Conf. Proc. 715, 3–73 (2004).

    Article  CAS  Google Scholar 

  19. Held, K. et al. Realistic investigations of correlated electron systems with LDA+DMFT. Phys. Status Solidi B 243, 2599–2631 (2006).

    Article  CAS  Google Scholar 

  20. Kotliar, G. et al. Electronic structure calculations with dynamical mean field theory. Rev. Mod. Phys. 78, 865–951 (2006).

    Article  CAS  Google Scholar 

  21. Kuneš, J., Anisimov, V. I., Lukoyanov, A. V. & Vollhardt, D. Local correlations and hole doping in NiO: A dynamical mean field study. Phys. Rev. B 75, 165115 (2007).

    Article  Google Scholar 

  22. Kuneš, J., Anisimov, V. I., Skornyakov, S. L., Lukoyanov, A. V. & Vollhardt, D. NiO: Correlated band structure of a charge-transfer insulator. Phys. Rev. Lett. 99, 156404 (1997).

    Article  Google Scholar 

  23. Cohen, R. E., Mazin, I. I. & Isaak, D. G. Magnetic collapse in transition metal oxides at high pressure: Implications for the Earth. Science 275, 654–657 (1997).

    Article  CAS  Google Scholar 

  24. Fang, Z., Solovyev, I. V., Sawada, H. & Terakura, K. First principles study on electronic structures and phase stability of MnO and FeO under high pressure. Phys. Rev. B 59, 762–774 (1999).

    Article  CAS  Google Scholar 

  25. Kasinathan, D. et al. Mott transition of MnO under pressure: comparison of correlated band theories. Phys. Rev. B 74, 195110 (2006).

    Article  Google Scholar 

  26. Kasinathan, D., Koepernik, K. & Pickett, W. E. Pressure-driven magnetic moment collapse in the ground state of MnO. New J. Phys. 9, 235–246 (2007).

    Article  Google Scholar 

  27. McMahan, A. K., Held, K. & Scalettar, R. T. Thermodynamic and spectral properties of compressed Ce calculated using a combined local-density approximation and dynamical mean field theory. Phys. Rev. B 67, 075108 (2003).

    Article  Google Scholar 

  28. McMahan, A. K. Combined local-density and dynamical mean field theory calculations for the compressed lanthanides Ce, Pr, and Nd. Phys. Rev. B 72, 115125 (2005).

    Article  Google Scholar 

  29. van Elp, J., Potze, R. H., Eskes, H., Berger, R. & Sawatzky, G. A. Electronic structure of MnO. Phys. Rev. B 44, 1530–1537 (1991).

    Article  CAS  Google Scholar 

  30. Liebsch, A. Mott transitions in multiorbital systems. Phys. Rev. Lett. 91, 226401 (2003).

    Article  CAS  Google Scholar 

  31. Koga, A., Kawakami, N., Rice, T. M. & Sigrist, M. Orbital-selective Mott transitions in the degenerate Hubbard model. Phys. Rev. Lett. 92, 216402 (2004).

    Article  Google Scholar 

  32. Anisimov, V. I., Zaanen, J. & Andersen, O. K. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 44, 943–954 (1991).

    Article  CAS  Google Scholar 

  33. Werner, P. & Millis, A. J. High-spin to low-spin and orbital polarization transitions in multiorbital Mott systems. Phys. Rev. Lett. 99, 126405 (2007).

    Article  Google Scholar 

  34. Savrasov, S. Y. & Kotliar, G. Spectral density functionals for electronic structure calculations. Phys. Rev. B 69, 245101 (2004).

    Article  Google Scholar 

  35. Shick, A., Havela, L., Kolorenc, J. & Drchal, V. Multiplet effects in the electronic structure of δ-Pu, Am and their compounds. Europhys. Lett. 77, 17003 (2007).

    Article  Google Scholar 

  36. Pavarini, E. et al. Mott transition and suppression of orbital fluctuations in orthorhombic 3d1 perovskites. Phys. Rev. Lett. 92, 176403 (2004).

    Article  CAS  Google Scholar 

  37. Craco, L., Laad, M. S., Leoni, S. & Muller-Hartmann, E. Insulator–metal transition in the doped 3d1 transition metal oxide LaTiO3 . Phys. Rev. B 70, 195116 (2004).

    Article  Google Scholar 

  38. Hirsch, J. E. & Fye, R. M. Monte Carlo method for magnetic impurities in metals. Phys. Rev. Lett. 56, 2521–2524 (1986).

    Article  CAS  Google Scholar 

  39. Anisimov, V. I. et al. Full orbital calculation scheme for materials with strongly correlated electrons. Phys. Rev. B 71, 125119 (2005).

    Article  Google Scholar 

  40. Shick, A. B, Liechtenstein, A. I. & Pickett, W. E. Implementation of the LDA+U method using the full potential linearized augmented plane wave basis. Phys. Rev. B 60, 10763–10769 (1999).

    Article  CAS  Google Scholar 

  41. Anisimov, V. I. & Gunnarsson, O. Density functional calculation of effective Coulomb interactions in metals. Phys. Rev. B 43, 7570–7574 (1991).

    Article  CAS  Google Scholar 

  42. Scalettar, R. T., Noack, R. M. & Singh, R. R. P. Ergodicity at large couplings with the determinant Monte Carlo algorithm. Phys. Rev. B 44, 10502–10507 (1991).

    Article  CAS  Google Scholar 

  43. Jarrell, M. & Gubernatis, J. E. Bayesian inference and the analytic continuation of imaginary-time quantum Monte Carlo data. Phys. Rep. 269, 133–195 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.K. gratefully acknowledges the Research Fellowship of the Alexander von Humboldt Foundation. We acknowledge numerous discussions with D. Vollhardt and A. K. McMahan, and useful interaction with K.-W. Lee during the latter stages of this work. This work was supported by SFB 484 of the Deutsche Forschungsgemeinschaft (J.K.), by the Russian Foundation for Basic Research under the grants RFFI-06-02-81017, RFFI-07-02-00041 (V.I.A. and A.V.L.) and the Dynasty Foundation (A.V.L.), by DOE grant No. DE-FG02-04ER46111 and by DOE Strategic Science Academic Alliance grant No. DE-FG01-06NA26204. This research was also encouraged and supported by the US Department of Energy’s Computational Materials Science Network (J.K., R.T.S. and W.E.P.).

Author information

Authors and Affiliations

Authors

Contributions

J.K. wrote the code and performed the DMFT (QMC) calculations. J.K., R.T.S., W.E.P. and V.I.A. formulated the approach and chose the application to MnO. A.V.L. and V.I.A. calculated the LDA quantities and carried out the Wannier transformation to the local representation. J.K. and W.E.P. wrote the paper.

Corresponding author

Correspondence to Jan Kuneš.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuneš, J., Lukoyanov, A., Anisimov, V. et al. Collapse of magnetic moment drives the Mott transition in MnO. Nature Mater 7, 198–202 (2008). https://doi.org/10.1038/nmat2115

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2115

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing