Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Accordion-like honeycombs for tissue engineering of cardiac anisotropy

Abstract

Tissue-engineered grafts may be useful in myocardial repair; however, previous scaffolds have been structurally incompatible with recapitulating cardiac anisotropy. Here, we use microfabrication techniques to create an accordion-like honeycomb microstructure in poly(glycerol sebacate), which yields porous, elastomeric three-dimensional (3D) scaffolds with controllable stiffness and anisotropy. Accordion-like honeycomb scaffolds with cultured neonatal rat heart cells demonstrated utility through: (1) closely matched mechanical properties compared to native adult rat right ventricular myocardium, with stiffnesses controlled by polymer curing time; (2) heart cell contractility inducible by electric field stimulation with directionally dependent electrical excitation thresholds (p<0.05); and (3) greater heart cell alignment (p<0.0001) than isotropic control scaffolds. Prototype bilaminar scaffolds with 3D interconnected pore networks yielded electrically excitable grafts with multi-layered neonatal rat heart cells. Accordion-like honeycombs can thus overcome principal structural–mechanical limitations of previous scaffolds, promoting the formation of grafts with aligned heart cells and mechanical properties more closely resembling native myocardium.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural and mechanical aspects of cardiac anisotropy.
Figure 2: Accordion-like honeycomb scaffolds yield anisotropic mechanical properties similar to native myocardium.
Figure 3: Accordion-like honeycomb scaffolds guide heart cell alignment.
Figure 4: Anisotropic honeycomb scaffolds promote heart cell alignment and directionally dependent electrophysiologic properties.
Figure 5: Prototype bilaminar honeycomb scaffolds with 3D interconnected pore networks are compatible with heart cell cultivation.

Similar content being viewed by others

References

  1. Macchiarelli, G. et al. A micro-anatomical model of the distribution of myocardial endomysial collagen. Histol. Histopathol. 17, 699–706 (2002).

    CAS  Google Scholar 

  2. Hanley, P. J., Young, A. A., LeGrice, I. J., Edgar, S. G. & Loiselle, D. S. Three dimensional configuration of perimysial collagen fibres in rat cardiac muscle at resting and extended sarcomere lengths. J. Physiol. 517, 831–837 (1999).

    Article  CAS  Google Scholar 

  3. Holmes, J. W., Borg, T. K. & Covell, J. W. Structure and mechanics of healing myocardial infarcts. Annu. Rev. Biomed. Eng. 7, 223–253 (2005).

    Article  CAS  Google Scholar 

  4. Costa, K. D., Lee, E. J. & Holmes, J. W. Creating alignment and anisotropy in engineered heart tissue: Role of boundary conditions in a model three-dimensional culture system. Tissue Eng. 9, 567–577 (2003).

    Article  Google Scholar 

  5. Akhyari, P. et al. Mechanical stretch regimen enhances the formation of bioengineered autologous cardiac muscle grafts. Circulation 106, I137–I142 (2002).

    Google Scholar 

  6. Fink, C. et al. Chronic stretch of engineered heart tissue induces hypertrophy and functional improvement. FASEB J. 14, 669–679 (2000).

    Article  CAS  Google Scholar 

  7. Radisic, M. et al. Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc. Natl Acad. Sci. USA 101, 18129–18134 (2004).

    Article  CAS  Google Scholar 

  8. Bursac, N. et al. Cardiac muscle tissue engineering: Toward an in vitro model for electrophysiological studies. Am. J. Physiol. Heart Circ. Physiol. 277, H433–444 (1999).

    Article  CAS  Google Scholar 

  9. Papadaki, M. et al. Tissue engineering of functional cardiac muscle: Molecular, structural, and electrophysiological studies. Am. J. Physiol. Heart Circ Physiol. 280, H168–H178 (2001).

    Article  CAS  Google Scholar 

  10. Yeo, Y. et al. Photocrosslinkable hydrogel for myocyte cell culture and injection. J. Biomed. Mater. Res. B 81, 312–322 (2007).

    Article  Google Scholar 

  11. Zimmermann, W. H. et al. Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nature Med. 12, 452–458 (2006).

    Article  CAS  Google Scholar 

  12. Feng, Z., Matsumoto, T. & Nakamura, T. Measurements of the mechanical properties of contracted collagen gels populated with rat fibroblasts or cardiomyocytes. J. Artif Organs 6, 192–196 (2003).

    Article  CAS  Google Scholar 

  13. Ott, H. C. et al. Perfusion-decellularized matrix: Using nature’s platform to engineer a bioartificial heart. Nature Med. 14, 213–221 (2008).

    Article  CAS  Google Scholar 

  14. Wang, Y., Ameer, G. A., Sheppard, B. J. & Langer, R. A tough biodegradable elastomer. Nature Biotechnol. 20, 602–606 (2002).

    Article  CAS  Google Scholar 

  15. Wang, Y., Kim, Y. M. & Langer, R. In vivo degradation characteristics of poly(glycerol sebacate). J. Biomed. Mater. Res. A 66, 192–197 (2003).

    Article  Google Scholar 

  16. Bettinger, C. J., Orrick, B., Misra, A., Langer, R. & Borenstein, J. T. Microfabrication of poly (glycerol-sebacate) for contact guidance applications. Biomaterials 27, 2558–2565 (2006).

    Article  CAS  Google Scholar 

  17. Bettinger, C. J. et al. Three-dimensional microfluidic tissue-engineering scaffolds using a flexible biodegradable polymer. Adv. Mater. 18, 165 (2006).

    Article  CAS  Google Scholar 

  18. Radisic, M. et al. Oxygen gradients correlate with cell density and cell viability in engineered cardiac tissue. Biotechnol. Bioeng. 93, 332–343 (2006).

    Article  CAS  Google Scholar 

  19. Chuong, C. J., Sacks, M. S., Templeton, G., Schwiep, F. & Johnson, R. L. Jr. Regional deformation and contractile function in canine right ventricular free wall. Am. J. Physiol. 260, H1224–H1235 (1991).

    Article  CAS  Google Scholar 

  20. Rappaport, D., Adam, D., Lysyansky, P. & Riesner, S. Assessment of myocardial regional strain and strain rate by tissue tracking in B-mode echocardiograms. Ultrasound Med. Biol. 32, 1181–1192 (2006).

    Article  Google Scholar 

  21. Sacks, M. S. & Chuong, C. J. Biaxial mechanical properties of passive right ventricular free wall myocardium. J. Biomech. Eng. 115, 202–205 (1993).

    Article  CAS  Google Scholar 

  22. Kocica, M. J. et al. The helical ventricular myocardial band: Global, three-dimensional, functional architecture of the ventricular myocardium. Eur. J. Cardiothorac. Surg. 29, S21–S40 (2006).

    Article  Google Scholar 

  23. Streeter, D. D. Jr, Spotnitz, H. M., Patel, D. P., Ross, J. Jr & Sonnenblick, E. H. Fiber orientation in the canine left ventricle during diastole and systole. Circ. Res. 24, 339–347 (1969).

    Article  Google Scholar 

  24. Bautista-Hernandez, V. et al. Coarctectomy reduces neoaortic arch obstruction in hypoplastic left heart syndrome. J. Thorac. Cardiovasc. Surg. 133, 1540–1546 (2007).

    Article  Google Scholar 

  25. Reinhartz, O. et al. Homograft valved right ventricle to pulmonary artery conduit as a modification of the Norwood procedure. Circulation 114, I594–I599 (2006).

    Article  Google Scholar 

  26. Kinch, J. W. & Ryan, T. J. Right ventricular infarction. N. Engl. J. Med. 330, 1211–1217 (1994).

    Article  CAS  Google Scholar 

  27. Gumina, R. J., Murphy, J. G., Rihal, C. S., Lennon, R. J. & Wright, R. S. Long-term survival after right ventricular infarction. Am. J. Cardiol. 98, 1571–1573 (2006).

    Article  Google Scholar 

  28. Gao, J., Crapo, P. M. & Wang, Y. Macroporous elastomeric scaffolds with extensive micropores for soft tissue engineering. Tissue Eng. 12, 917–925 (2006).

    Article  CAS  Google Scholar 

  29. Chen, Q. Z. et al. Characterisation of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissue. Biomaterials 29, 47–57 (2008).

    Article  Google Scholar 

  30. Radisic, M. et al. Pre-treatment of synthetic elastomeric scaffolds by cardiac fibroblasts improves engineered heart tissue. J. Biomed. Mater. Res. A 86, 713–724 (2008).

    Article  Google Scholar 

  31. Radisic, M. et al. Biomimetic approach to cardiac tissue engineering: Oxygen carriers and channeled scaffolds. Tissue Eng. 12, 2077–2091 (2006).

    Article  CAS  Google Scholar 

  32. Crapo, P. M., Gao, J & Wang, Y. Seamless tubular poly(glycerol sebacate) scaffolds: High-yield fabrication and potential applications. J. Biomed. Mater. Res. A 86, 354–363 (2008).

    Article  Google Scholar 

  33. Boublik, J. et al. Mechanical properties and remodeling of hybrid cardiac constructs made from heart cells, fibrin, and biodegradable, elastomeric knitted fabric. Tissue Eng. 11, 1122–1132 (2005).

    Article  CAS  Google Scholar 

  34. Cheng, M., Park, H., Engelmayr, G. C., Moretti, M. & Freed, L. E. Effects of regulatory factors on engineered cardiac tissue in vitro. Tissue Eng. 13, 2709–2719 (2007).

    Article  CAS  Google Scholar 

  35. Cheng, M., Moretti, M., Engelmayr, G. C. Jr & Freed, L. E. Insulin-like growth factor-I and perfusion enhance the formation of tissue engineered cardiac grafts. Tissue Eng. 10.1089/ten.tea.2008.0077 (in the press; PMID: 18759675).

  36. Bardou, A. L. et al. Directional variability of stimulation threshold measurements in isolated guinea pig cardiomyocytes: Relationship with orthogonal sequential defibrillating pulses. Pacing Clin. Electrophysiol. 13, 1590–1595 (1990).

    Article  CAS  Google Scholar 

  37. Ranjan, R. & Thakor, N. V. Electrical stimulation of cardiac myocytes. Ann. Biomed. Eng. 23, 812–821 (1995).

    Article  CAS  Google Scholar 

  38. Bursac, N. et al. Cultivation in rotating bioreactors promotes maintenance of cardiac myocyte electrophysiology and molecular properties. Tissue Eng. 9, 1243–1253 (2003).

    Article  CAS  Google Scholar 

  39. Engelmayr, G. C. Jr, Papworth, G. D., Watkins, S. C., Mayer, J. E. Jr & Sacks, M. S. Guidance of engineered tissue collagen orientation by large-scale scaffold microstructures. J. Biomech. 39, 1819–1831 (2006).

    Article  Google Scholar 

  40. Nichol, J. W., Engelmayr, G. C. Jr, Cheng, M. & Freed, L. E. Co-culture induces alignment in engineered cardiac constructs via MMP-2 expression. Biochem. Biophys. Res. Commun. 373, 360–365 (2008).

    Article  CAS  Google Scholar 

  41. Sacks, M. S., Smith, D. B. & Hiester, E. D. A small angle light scattering device for planar connective tissue microstructural analysis. Ann. Biomed. Eng. 25, 678–689 (1997).

    Article  CAS  Google Scholar 

  42. Shimizu, T. et al. Polysurgery of cell sheet grafts overcomes diffusion limits to produce thick, vascularized myocardial tissues. FASEB J. 20, 708–710 (2006).

    Article  CAS  Google Scholar 

  43. Borenstein, J. T. et al. Microfabrication of three-dimensional engineered scaffolds. Tissue Eng. 13, 1837–1844 (2007).

    Article  CAS  Google Scholar 

  44. Camelliti, P., Gallagher, J. O., Kohl, P. & McCulloch, A. D. Micropatterned cell cultures on elastic membranes as an in vitro model of myocardium. Nature Protocols 1, 1379–1391 (2006).

    Article  CAS  Google Scholar 

  45. Feinberg, A. W. et al. Muscular thin films for building actuators and powering devices. Science 317, 1366–1370 (2007).

    Article  CAS  Google Scholar 

  46. Radisic, M. et al. Medium perfusion enables engineering of compact and contractile cardiac tissue. Am. J. Physiol. Heart Circ. Physiol. 286, H507–H516 (2004).

    Article  CAS  Google Scholar 

  47. Dvir, T., Benishti, N., Shachar, M. & Cohen, S. A novel perfusion bioreactor providing a homogenous milieu for tissue regeneration. Tissue Eng. 12, 2843–2852 (2006).

    Article  CAS  Google Scholar 

  48. Dvir, T., Levy, O., Shachar, M., Granot, Y. & Cohen, S. Activation of the ERK1/2 cascade via pulsatile interstitial fluid flow promotes cardiac tissue assembly. Tissue Eng. 13, 2185–2193 (2007).

    Article  CAS  Google Scholar 

  49. Dahotre, N. B. & Harimkar, S. P. Laser Fabrication and Machining of Materials (Springer Science Business Media, 2008).

    Google Scholar 

  50. Neeley, W. L. et al. A microfabricated scaffold for retinal progenitor cell grafting. Biomaterials 29, 418–426 (2008).

    Article  CAS  Google Scholar 

  51. Ng, C. P., Hinz, B. & Swartz, M. A. Interstitial fluid flow induces myofibroblast differentiation and collagen alignment in vitro. J. Cell. Sci. 118, 4731–4739 (2005).

    Article  CAS  Google Scholar 

  52. Ayres, C. E. et al. Measuring fiber alignment in electrospun scaffolds: A user’s guide to the 2D fast Fourier transform approach. J. Biomater. Sci. Polym. Ed. 19, 603–621 (2008).

    Article  CAS  Google Scholar 

  53. Sander, E. A. & Barocas, V. H. Comparison of 2D fiber network orientation measurement methods. J. Biomed. Mater. Res. A (2008).

Download references

Acknowledgements

Financial support for this work was provided by NIH NRSA fellowship 1 F32 HL084968-01 (to G.C.E.), a Charles Stark Draper fellowship (to C.J.B.), NASA Grant NNJ04HC72G (to L.E.F.) and NIH Grant DE013023 (to R.L.). We are indebted to Y. Wang and M. Radisic for advice on porogen-leached PGS scaffolds, S.N. Bhatia, D. Albright and D. Ward for advice on PGS membrane microfabrication, N. Watson and E. Batchelder for help with confocal and electron microscopy and S. Kangiser for help with manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa E. Freed.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1366 kb)

Supplementary Information

Supplementary Movie (AVI 8579 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engelmayr, G., Cheng, M., Bettinger, C. et al. Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nature Mater 7, 1003–1010 (2008). https://doi.org/10.1038/nmat2316

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2316

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing