Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs

Abstract

The high natural abundance of silicon, together with its excellent reliability and good efficiency in solar cells, suggest its continued use in production of solar energy, on massive scales, for the foreseeable future. Although organics, nanocrystals, nanowires and other new materials hold significant promise, many opportunities continue to exist for research into unconventional means of exploiting silicon in advanced photovoltaic systems. Here, we describe modules that use large-scale arrays of silicon solar microcells created from bulk wafers and integrated in diverse spatial layouts on foreign substrates by transfer printing. The resulting devices can offer useful features, including high degrees of mechanical flexibility, user-definable transparency and ultrathin-form-factor microconcentrator designs. Detailed studies of the processes for creating and manipulating such microcells, together with theoretical and experimental investigations of the electrical, mechanical and optical characteristics of several types of module that incorporate them, illuminate the key aspects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustrations, scanning electron microscopy (SEM) image and optical images of key steps in the fabrication of monocrystalline silicon photovoltaic modules that incorporate arrays of microscale solar cells (μ-cells).
Figure 2: Doping layout and performance characteristics of individual μ-cells.
Figure 3: Optical image, schematic illustration, mechanics modelling and photovoltaic performance of mechanically flexible modules that incorporate arrays of interconnected μ-cells.
Figure 4: Optical images and transmission spectra of printed, semitransparent μ-cell arrays and interconnected modules.
Figure 5: Optical images, schematic illustration and performance characteristics of μ-CPV modules.

Similar content being viewed by others

References

  1. Campbell, P. & Green, M. A. Light trapping properties of pyramidally textured surfaces. J. Appl. Phys. 62, 243–249 (1987).

    Article  Google Scholar 

  2. Heine, C. & Morf, R. H. Submicrometer gratings for solar-energy applications. Appl. Opt. 34, 2476–2482 (1995).

    Article  CAS  Google Scholar 

  3. Feng, N.-N. et al. Design of highly efficient light-trapping structures for thin-film crystalline silicon solar cells. IEEE Trans. Electron Devices 54, 1926–1933 (2007).

    Article  CAS  Google Scholar 

  4. Wenham, S. R., Honsberg, C. B. & Green, M. A. Buried contact silicon solar cells. Sol. Energy Mater. Sol. Cells 34, 101–110 (1994).

    Article  CAS  Google Scholar 

  5. Sinton, R. A., Kwark, Y., Gan, J. Y. & Swanson, R. M. 27.5-Percent silicon concentrator solar-cells. IEEE Electron Devices Lett. 7, 567–569 (1986).

    Article  Google Scholar 

  6. Kerschaver, E. V. & Beaucarne, G. Back-contact solar cells: A Review. Prog. Photovolt. 14, 107–123 (2006).

    Article  Google Scholar 

  7. Zhao, J. H., Wang, A. H. & Green, M. A. 24.5% efficiency silicon PERT cells on MCZ substrates and 24.7% efficiency PERL cells on FZ substrates. Prog. Photovolt. 7, 471–474 (1999).

    Article  CAS  Google Scholar 

  8. Biancardo, M. et al. Characterization of microspherical semi-transparent solar cells and modules. Sol. Energy 81, 711–716 (2007).

    Article  CAS  Google Scholar 

  9. Liu, Z. X. et al. A concentrator module of spherical Si solar cell. Sol. Energy Mater. Sol. Cells 91, 1805–1810 (2007).

    Article  CAS  Google Scholar 

  10. Minemoto, T. & Takakura, H. Fabrication of spherical silicon crystals by dropping method and their application to solar cells. Jpn. J. Appl. Phys. 46, 4016–4020 (2007).

    Article  CAS  Google Scholar 

  11. Taguchi, M. et al. HIT (TM) cells—high-efficiency crystalline Si cells with novel structure. Prog. Photovolt. 8, 503–513 (2000).

    Article  CAS  Google Scholar 

  12. Weber, K. J. et al. A novel low-cost, high-efficiency micromachined silicon solar cell. IEEE Electron Devices Lett. 25, 37–39 (2004).

    Article  CAS  Google Scholar 

  13. Verlinden, P. J. et al. Sliver (R) solar cells: A new thin-crystalline silicon photovoltaic technology. Sol. Energy Mater. Sol. Cells 90, 3422–3430 (2006).

    Article  CAS  Google Scholar 

  14. Brendel, R., Bergmann, R. B., Lolgen, P., Wolf, M. & Werner, J. H. Ultrathin crystalline silicon solar cells on glass substrates. Appl. Phys. Lett. 70, 390–392 (1997).

    Article  CAS  Google Scholar 

  15. Brendel, R. Review of layer transfer processes for crystalline thin-film silicon solar cells. Jpn. J. Appl. Phys. 40, 4431–4439 (2001).

    Article  CAS  Google Scholar 

  16. Tayanaka, H., Yamauchi, K. & Matsushita, T. Thin-film crystalline silicon solar cells obtained by separation of a porous silicon sacrificial layer. Proc. 2nd World Conf. Photovolt. Sol. Energy Conv. 1272–1275 (Institute of Electrical and Electronics Engineers (IEEE), 1998).

    Google Scholar 

  17. Yamamoto, K. et al. Thin-film poly-Si solar cells on glass substrate fabricated at low temperature. Appl. Phys. A 69, 179–185 (1999).

    Article  CAS  Google Scholar 

  18. Shah, A. et al. Photovoltaic Specialists Conference, Conference Record of the Twenty-Sixth IEEE 569–574 (Institute of Electrical and Electronics Engineers (IEEE), 1997).

    Book  Google Scholar 

  19. Bergmann, R. B. Crystalline Si thin-film solar cells: A review. Appl. Phys. A 69, 187–194 (1999).

    Article  CAS  Google Scholar 

  20. Green, M. A. Crystalline and thin-film silicon solar cells: State of the art and future potential. Sol. Energy 74, 181–192 (2003).

    Article  CAS  Google Scholar 

  21. Kazmerski, L. L. Solar photovoltaics R&D at the tipping point: A 2005 technology overview. J. Electron Spectrosc. Relat. Phenom. 150, 105–135 (2006).

    Article  CAS  Google Scholar 

  22. Mack, S., Meitl, M. A., Baca, A. J., Zhu, Z. T. & Rogers, J. A. Mechanically flexible thin-film transistors that use ultrathin ribbons of silicon derived from bulk wafers. Appl. Phys. Lett. 88, 213101 (2006).

    Article  Google Scholar 

  23. Ko, H. C., Baca, A. J. & Rogers, J. A. Bulk quantities of single-crystal silicon micro-/nanoribbons generated from bulk wafers. Nano Lett. 6, 2318–2324 (2006).

    Article  CAS  Google Scholar 

  24. Baca, A. J. et al. Printable single-crystal silicon micro/nanoscale ribbons, platelets and bars generated from bulk wafers. Adv. Funct. Mater. 17, 3051–3062 (2007).

    Article  CAS  Google Scholar 

  25. Meitl, M. A. et al. Stress focusing for controlled fracture in microelectromechanical systems. Appl. Phys. Lett. 90, 083110 (2007).

    Article  Google Scholar 

  26. Meitl, M. A. et al. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nature Mater. 5, 33–38 (2006).

    Article  CAS  Google Scholar 

  27. Lee, K. J. et al. Large-area, selective transfer of microstructured silicon: A printing-based approach to high-performance thin-film transistors supported on flexible substrates. Adv. Mater. 17, 2332–2336 (2005).

    Article  CAS  Google Scholar 

  28. Wilson, R. G., Stevie, F. A. & Magee, C. W. Secondary Ion Mass Spectrometry: A Practical Handbook for Depth Profiling and Bulk Impurity Analysis (Wiley, 1989).

    Google Scholar 

  29. Hull, R. (ed.) Properties of Crystalline Silicon (The Institution of Electrical Engineers (IEE), 1999).

  30. Budianu, E., Purica, M., Rusu, E., Manea, E. & Gavrila, R. Semiconductor Conf. 2002. CAS 2002 Proc. Int. Vol. 1 (Institute of Electrical and Electronics Engineers (IEEE), 2002).

    Google Scholar 

  31. Clugston, D. A. & Basore, P. A. Photovoltaic Specialists Conf. 1997., Conf. Record of the Twenty-Sixth IEEE 207–210 (Institute of Electrical and Electronics Engineers (IEEE), 1997).

    Book  Google Scholar 

  32. Kunnavakkam, M. V. et al. Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process. Appl. Phys. Lett. 82, 1152–1154 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Banks, K. Colravy and D. Sievers for help with processing, T. Spila for assistance with secondary-ion mass spectrometry measurements and H. Kim and D. Stevenson for help with photography. The materials parts of this effort were supported by the US Department of Energy (DoE), Division of Materials Sciences, under award DE-FG02-07ER46471, through the Materials Research Laboratory (MRL). The general characterization facilities were provided through the MRL with support from the University of Illinois and from DoE grants DE-FG02-07ER46453 and DE-FG02-07ER46471. The mechanics theory and the transfer-printing systems were developed under support from the Center for Nanoscale Chemical Electrical Mechanical Manufacturing Systems at the University of Illinois (funded by the NSF under grant DMI-0328162). J.Y. and J.B.G. acknowledge support from a Beckman postdoctoral fellowship. A.J.B. acknowledges support from the Department of Defense Science, Mathematics and Research for Transformation (SMART) fellowship.

Author information

Authors and Affiliations

Authors

Contributions

J.Y., J.A.L., R.G.N., P.M.F., Y.H., A.R. and J.A.R. designed the experiments. J.Y., A.J.B., S.-I.P., P.E., L.L., R.H.K., T.-H.K., M.J.M., B.Y.A., E.B.D., J.A.L., R.G.N., P.M.F., Y.H., A.R. and J.A.R. carried out experiments. J.Y., A.J.B., S.-I.P., J.A.L., R.G.N., P.M.F., Y.H., A.R. and J.A.R. analysed the data. P.E., J.Y., R.H.K., T.-H.K., J.A.L., R.G.N., P.M.F., Y.H., A.R. and J.A.R. contributed to transfer printing. J.X., S.W., Y.H., J.A.L., R.G.N., P.M.F., Y.H., A.R. and J.A.R. contributed to mechanics modelling and analysis. J.B.G., J.A.L., R.G.N., P.M.F., Y.H., A.R. and J.A.R. contributed to optics simulation. J.Y., A.J.B., J.A.L., R.G.N., P.M.F., Y.H., A.R. and J.A.R. wrote the paper.

Corresponding author

Correspondence to John A. Rogers.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1256 kb)

Supplementary Information

Supplementary Movie (MOV 18591 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoon, J., Baca, A., Park, SI. et al. Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. Nature Mater 7, 907–915 (2008). https://doi.org/10.1038/nmat2287

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2287

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing