Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electron and phonon renormalization near charged defects in carbon nanotubes

Abstract

Owing to their influence on electrons and phonons, defects can significantly alter electrical conductance, and optical, mechanical and thermal properties of a material. Thus, understanding and control of defects, including dopants in low-dimensional systems, hold great promise for engineered materials and nanoscale devices. Here, we characterize experimentally the effects of a single defect on electrons and phonons in single-wall carbon nanotubes. The effects demonstrated here are unusual in that they are not caused by defect-induced symmetry breaking. Electrons and phonons are strongly coupled in sp2 carbon systems, and a defect causes renormalization of electron and phonon energies. We find that near a negatively charged defect, the electron velocity is increased, which in turn influences lattice vibrations locally. Combining measurements on nanotube ensembles and on single nanotubes, we capture the relation between atomic response and the readily accessible macroscopic behaviour.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic model showing the renormalization of electron and phonon energies near a negatively charged defect, and its influence on the double-resonance G′ scattering process discussed in this work.
Figure 2: The G′ Raman band in different sp2 carbon materials measured at room temperature with Elaser=2.41 eV (514 nm).
Figure 3: Near-field Raman and photoluminescence spectroscopy and imaging of a (9, 1) SWNT with Elaser=1.96 eV (633 nm).
Figure 4: Dependence of the G′ band on Elaser for the n-doped SWNT sample.
Figure 5: The use of the G′ feature to study doping in other SWNT samples.

Similar content being viewed by others

References

  1. Jorio, A., Dresselhaus, M. S. & Dresselhaus, G. Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications Vol. 111 (Springer Series in Topics in Appl. Phys., Springer, 2008).

    Book  Google Scholar 

  2. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac Fermions in graphene. Nature 438, 197–200 (2005).

    CAS  Google Scholar 

  3. Piscanec, S., Lazzeri, M., Mauri, F., Ferrari, A. C. & Robertson, J. Kohn anomalies and electron–phonon interactions in graphite. Phys. Rev. Lett. 93, 185503 (2004).

    Article  CAS  Google Scholar 

  4. Ando, T. Anomaly of optical phonon in monolayer graphene. J. Phys. Soc. Jpn. 75, 124701 (2006).

    Article  Google Scholar 

  5. Tsang, J. C., Freitag, M., Perebeinos, V., Liu, J. & Avouris, P. Doping and phonon renormalization in carbon nanotubes. Nature Nanotech. 2, 725–730 (2007).

    Article  CAS  Google Scholar 

  6. Pisana, S. et al. Breakdown of the adiabatic Born–Oppenheimer approximation in graphene. Nature Mater. 6, 198–201 (2007).

    Article  CAS  Google Scholar 

  7. Terrones, M., Souza Filho, A. G. & Rao, A. M. Doped Carbon Nanotubes: Synthesis, Characterization and Applications Vol. 111, 531–566 (Springer Topics in Appl. Phys., Springer, 2008).

    Google Scholar 

  8. Jones, M. et al. Extrinsic and intrinsic effects on the excited-state kinetics of single-walled carbon nanotubes. Nano Lett. 7, 300–306 (2007).

    Article  CAS  Google Scholar 

  9. Cognet, L. et al. Stepwise quenching of exciton fluorescence in carbon nanotubes by single-molecule reactions. Science 316, 1465–1468 (2007).

    Article  CAS  Google Scholar 

  10. Ferrari, A. C. & Robertson, J. Raman spectroscopy in carbons: From nanotubes to diamond. Phil. Trans. R. Soc. Lond. A 362, 2267–2565 (2004).

    Google Scholar 

  11. Pimenta, M. A. et al. Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 9, 1276–1291 (2007).

    Article  CAS  Google Scholar 

  12. Thomsen, C. & Reich, S. Double resonant Raman scattering in graphite. Phys. Rev. Lett. 85, 5214 (2000).

    Article  CAS  Google Scholar 

  13. Saito, R. et al. Probing phonon dispersion relations of graphite by double resonance Raman scattering. Phys. Rev. Lett. 88, 027401 (2002).

    Article  CAS  Google Scholar 

  14. Rao, A. M., Eklund, P. C., Bandow, S., Thess, A. & Smalley, R. E. Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering. Nature 388, 257–259 (1997).

    Article  CAS  Google Scholar 

  15. McGuire, K., Gothard, N., Gai, P. L., Dresselhaus, M. S., Sumanasekera, G. & Rao, A. M. Synthesis and Raman characterization of boron-doped single-walled carbon nanotubes. Carbon 43, 219–227 (2005).

    Article  CAS  Google Scholar 

  16. Villapando-Paez, F. et al. Synthesis and characterization of long strands of nitrogen-doped single-walled carbon nanotubes. Chem. Phys. Lett. 424, 345–352 (2006).

    Article  Google Scholar 

  17. Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).

    Article  CAS  Google Scholar 

  18. Gupta, A., Chen, G., Joshi, P., Tadigadapa, S. & Eklund, P. C. Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano Lett. 6, 2667–2673 (2006).

    Article  CAS  Google Scholar 

  19. Malard, L. M. et al. Probing the electronic structure of bilayer graphene by Raman scattering. Phys. Rev. B 76, 201401 (2007).

    Article  Google Scholar 

  20. Anderson, N., Hartschuh, A., Cronin, S. & Novotny, L. Nanoscale vibrational analysis of single-walled carbon nanotubes. J. Am. Chem. Soc. 127, 2533–2537 (2005).

    Article  CAS  Google Scholar 

  21. Dresselhaus, M. S., Dresselhaus, G., Saito, R. & Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 409, 47–99 (2005).

    Article  Google Scholar 

  22. Souza Filho, A. G. et al. Competing spring constant versus double resonance effects on the properties of dispersive modes in isolated single-wall carbon nanotubes. Phys. Rev. B 67, 035427 (2003).

    Article  Google Scholar 

  23. Samsonidze, Ge. G. et al. Phonon trigonal warping effect in graphite and carbon nanotubes. Phys. Rev. Lett. 90, 027403 (2003).

    Article  Google Scholar 

  24. Das, A. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nature Nanotech. 3, 210–215 (2008).

    Article  CAS  Google Scholar 

  25. Das, A. et al. Phonon renormalization in doped bilayer graphene, Preprint at <http://arxiv.org/abs/0807.1631> (2008).

  26. Corio, P., Jorio, A., Demir, N. & Dresselhaus, M. S. Spectro-electrochemical studies of single wall carbon nanotubes films. Chem. Phys. Lett. 392, 396–402 (2004).

    Article  CAS  Google Scholar 

  27. Lazzeri, M., Attaccalite, C., Wirtz, L. & Mauri, F. Impact of the electron–electron correlation on phonon dispersions: Failure of LDA and GGA functionals in graphene and graphite. Phys. Rev. B 78, 081406(R) (2008).

    Article  Google Scholar 

  28. Peres, N. M. R. et al. Electron waves in chemically substituted graphene. Europhys. Lett. 80, 67007 (2007).

    Article  Google Scholar 

  29. Hwang, E. H., Hu, B. Y.-K. & Sarma, S. D. Density dependent exchange contribution to η/ n and compressibility in graphene. Phys. Rev. Lett. 99, 226801 (2007).

    Article  CAS  Google Scholar 

  30. Park, C-.H., Giustino, F., Cohen, M. L. & Louie, S. G. Velocity renormalization and carrier lifetime in graphene from the electron–phonon interaction. Phys. Rev. Lett. 99, 086804 (2007).

    Article  Google Scholar 

  31. Cruz-Silva, E. et al. Heterodoped nanotubes: Theory, synthesis, and characterization of phosphorus-nitrogen doped multiwalled carbon nanotubes. Acs Nano. 2, 441–448 (2008).

    Article  CAS  Google Scholar 

  32. Cardenas, J. F. & Gromov, A. Double resonance Raman scattering in solubilised single walled carbon nanotubes. Chem. Phys. Lett. 442, 409–412 (2007).

    Article  CAS  Google Scholar 

  33. Pfeiffer, R., Kuzmany, H., Simon, F., Bokova, S. N. & Obraztsova, E. Resonance Raman scattering from phonon overtones in double-wall carbon nanotubes. Phys. Rev. B 71, 155409 (2005).

    Article  Google Scholar 

  34. Freitag, M. et al. Scanning photovoltage microscopy of potential modulations in carbon nanotubes. Appl. Phys. Lett. 91, 031101 (2007).

    Article  Google Scholar 

  35. Perebeinos, V. & Avouris, Ph. Phonon and electronic nonradiative decay mechanisms of excitons in carbon nanotubes. Phys. Rev. Lett. 101, 057401 (2008).

    Article  Google Scholar 

  36. Murata, M. et al. Superconductivity in thin films of boron–doped carbon nanotubes. Phys. Rev. Lett. 101, 027002 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge A. H. Castro-Neto, R. B. Capaz, J. Lefebvre and R. Dickman for helpful discussions. I.O.M., M.A.P. and A.J. acknowledge financial support from the Rede Nacional de Pesquisa em Nanotubos de Carbono, Rede National de SPM, Instituto de Nanotecnologia (MCT-CNPq) and CAPES/DAAD-Probral. A.H. and H.Q. acknowledge financial support from the Deutsche Forschungsgemeinschaft (Me 1600/6-1/2). M.T, H.T and J.C.D acknowledge financial support from CONACYT-Mexico Grants No.45762, 45772, 41464-Inter American Collaboration, 42428-Inter American Collaboration and PUE-2004-CO2-9 Fondo Mixto de Puebla. A.M.R acknowledges K. McGuire and financial support from NSF DMR 0304019. N.A. and L.N. acknowledge financial support from the DOE (grant DEFG02-05ER46207) and NSF (grant CHE-0454704).

Author information

Authors and Affiliations

Authors

Contributions

Project planning: A.J.; sample preparation: I.O.M., N.A., M.T, H.T., J.C.D., A.M.R.; far-field measurements: I.O.M, M.A.P., A.J.; near-field measurements: N.A., A.H., H.Q., L.N., A.J.; all authors contributed to data analysis and scientific discussions.

Corresponding authors

Correspondence to Lukas Novotny or Ado Jorio.

Supplementary information

Supplementary Information

Supplementary Information (PDF 264 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maciel, I., Anderson, N., Pimenta, M. et al. Electron and phonon renormalization near charged defects in carbon nanotubes. Nature Mater 7, 878–883 (2008). https://doi.org/10.1038/nmat2296

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2296

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing