Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Universal link between the boson peak and transverse phonons in glass

Abstract

The physical properties of a topologically disordered amorphous material (glass), such as heat capacity and thermal conductivity, are markedly different from those of its ordered crystalline counterpart. The understanding of these phenomena is a notoriously complex problem. One of the universal features of disordered glasses is the ‘boson peak’, which is observed in neutron and Raman scattering experiments. The boson peak is typically ascribed to an excess density of vibrational states. Here, we study the nature of the boson peak, using numerical simulations of several glass-forming systems. We discovered evidence suggestive of the equality of the boson peak frequency to the Ioffe–Regel limit for ‘transverse’ phonons, above which transverse phonons no longer propagate. Our results indicate a possibility that the origin of the boson peak is transverse vibrational modes associated with defective soft structures in the disordered state. Furthermore, we suggest a possible link between slow structural relaxation and fast boson peak dynamics in glass-forming systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural relaxation and high-frequency dynamics (boson peak).
Figure 2: Longitudinal and transverse phonon dynamics and the dispersion relations.
Figure 3: Relation between the boson peak frequency and the Ioffe–Regel limit frequencies for longitudinal and transverse phonons.
Figure 4: Scaled shape of the boson peak.
Figure 5: Structural origin of the boson peak.

Similar content being viewed by others

References

  1. Phillips, W. A. (ed.) Amorphous Solids: Low-Temperature Properties (Springer, 1981).

  2. Frick, B. & Richter, D. The microscopic basis of the glass transition in polymers from neutron scattering studies. Science 267, 1939–1945 (1995).

    Article  CAS  Google Scholar 

  3. Angell, C. A. Formation of glasses from liquids and biopolymers. Science 267, 633–636 (1995).

    Article  Google Scholar 

  4. Greaves, G. N. & Sen, S. Inorganic glasses, glass-forming liquids and amorphizing solids. Adv. Phys. 56, 1–166 (2007).

    Article  CAS  Google Scholar 

  5. Anderson, P. W. Through the glass lightly. Science 267, 1615–1616 (1995).

    Article  CAS  Google Scholar 

  6. Debenedetti, P. G. & Stillinger, F. H. Supercooled liquids and the glass transition. Nature 410, 259–267 (2001).

    Article  CAS  Google Scholar 

  7. Sokolov, A. P. et al. Low-temperature anomalies in strong and fragile glass formers. Phys. Rev. Lett. 78, 2405–2408 (1997).

    Article  CAS  Google Scholar 

  8. Ioffe, A. F. & Regel, A. R. Non-crystalline, amorphous, and liquid electronic semiconductors. Prog. Semicond. 4, 237–291 (1960).

    Google Scholar 

  9. Rufflé, B., Guimbretière, G., Courtens, E., Vacher, R. & Monaco, G. Glass-specific behavior in the damping of acoustic-like vibrations. Phys. Rev. Lett. 96, 045502 (2006).

    Article  Google Scholar 

  10. Scopigno, T., Suck, J.-B., Angelini, R., Albergamo, F. & Ruocco, G. High-frequency dynamics in metallic glasses. Phys. Rev. Lett. 96, 135501 (2006).

    Article  CAS  Google Scholar 

  11. Ruocco, G., Matic, A., Scopigno, T. & Yannopoulos, S. N. Comment on Glass-specific behavior in the damping of acousticlike vibrations. Phys. Rev. Lett. 98, 079601 (2007).

    Article  CAS  Google Scholar 

  12. Courtens, E., Foret, M., Rufflé, B. & Vacher, R. Comment on High-frequency dynamics in metallic glasses. Phys. Rev. Lett. 98, 079603 (2007).

    Article  CAS  Google Scholar 

  13. Winterling, G. Very-low-frequency Raman scattering in vitreous silica. Phys. Rev. B 12, 2432–2440 (1975).

    Article  CAS  Google Scholar 

  14. Nemanich, R. J. Low-frequency inelastic light scattering from chalcogenide glasses and alloys. Phys. Rev. B 16, 1655–1674 (1977).

    Article  CAS  Google Scholar 

  15. Schober, H. R. Vibrations and relaxations in a soft sphere glass: Boson peak and structure factors. J. Phys. Condens. Matter 16, S2659–S2670 (2004).

    Article  CAS  Google Scholar 

  16. Pilla, O. et al. The low energy excess of vibrational states in v-SiO2: The role of transverse dynamics. J. Phys. Condens. Matter 16, 8519–8530 (2004).

    Article  CAS  Google Scholar 

  17. Horbach, J., Kob, W. & Binder, K. High frequency sound and the boson peak in amorphous silica. Eur. Phys. J. B 19, 531–543 (2001).

    Article  CAS  Google Scholar 

  18. Dove, M. T. et al. Floppy modes in crystalline and amorphous silicates. Phys. Rev. Lett. 78, 1070–1073 (1997).

    Article  CAS  Google Scholar 

  19. Hehlen, B. et al. Hyper-Raman scattering observation of the Boson peak in vitreous silica. Phys. Rev. Lett. 84, 5355–5358 (2000).

    Article  CAS  Google Scholar 

  20. Rufflé, B., Parshin, D. A., Courtens, E. & Vacher, R. Boson peak and its relation to acoustic attenuation in glasses. Phys. Rev. Lett. 100, 015501 (2008).

    Article  Google Scholar 

  21. Elliott, S. A unified model for the low-energy vibrational behaviour of amorphous solids. Europhys. Lett. 19, 201–206 (1992).

    Article  CAS  Google Scholar 

  22. Klinger, M. I. Atomic quantum diffusion, tunnelling states and some related phenomena in condensed systems. Phys. Rep. 94, 184–312 (1983).

    Article  CAS  Google Scholar 

  23. Klinger, M. I. & Kosevich, A. M. Soft-mode dynamics model of boson peak and high frequency sound in glasses: Inelastic Ioffe–Regel crossover and strong hybridization of excitations. Phys. Lett. 295, 311–317 (2002).

    Article  CAS  Google Scholar 

  24. Buchenau, U. et al. Interaction of soft modes and sound waves in glasses. Phys. Rev. B 46, 2798–2808 (1992).

    Article  CAS  Google Scholar 

  25. Duval, E., Boukenter, A. & Achibat, T. Vibrational dynamics and the structure of glasses. J. Phys. Condens. Matter 2, 10227–10234 (1990).

    Article  Google Scholar 

  26. Götze, W. & Mayr, M. R. Evolution of vibrational excitations in glassy systems. Phys. Rev. E 61, 587–606 (2000).

    Article  Google Scholar 

  27. Schirmacher, W., Diezemann, G. & Ganter, C. Harmonic vibrational excitations in disordered solids and the ‘boson peak’. Phys. Rev. Lett. 81, 136–139 (1998).

    Article  CAS  Google Scholar 

  28. Schirmacher, W. Thermal conductivity of glassy materials and the “boson peak”. Europhys. Lett. 73, 892–898 (2006).

    Article  CAS  Google Scholar 

  29. Schirmacher, W., Ruocco, G. & Scopigno, T. Acoustic attenuation in glasses and its relation with the Boson peak. Phys. Rev. Lett. 98, 025501 (2007).

    Article  CAS  Google Scholar 

  30. Grigera, T., Martín-Mayor, V., Parisi, G. & Verrocchio, P. Phonon interpretation of the ‘boson peak’ in supercooled liquids. Nature 422, 289–292 (2003).

    Article  CAS  Google Scholar 

  31. Lubchenko, V. & Wolynes, P. G. The origin of the boson peak and thermal conductivity plateau in low-temperature glasses. Proc. Natl Acad. Sci. USA 100, 1515–1518 (2003).

    Article  CAS  Google Scholar 

  32. Wittmer, J. P., Tanguy, A., Barrat, J. L. & Lewis, L. Vibrations of amorphous, nanometric structures: When does continuum theory apply? Europhys. Lett. 57, 423–429 (2002).

    Article  CAS  Google Scholar 

  33. Wyart, M., Nagel, S. R. & Witten, T. A. Geometric origin of excess low-frequency vibrational modes in weakly connected amorphous solids. Europhys. Lett. 72, 486–492 (2005).

    Article  CAS  Google Scholar 

  34. Tanaka, H. Physical origin of the boson peak deduced from a two-order-parameter model of liquid. J. Phys. Soc. Jpn. 70, 1178–1181 (2001).

    Article  CAS  Google Scholar 

  35. Andersen, H. C. Molecular dynamics studies of heterogeneous dynamics and dynamic crossover in supercooled atomic liquids. Proc. Natl Acad. Sci. USA 102, 6686–6691 (2005).

    Article  CAS  Google Scholar 

  36. Shintani, H. & Tanaka, H. Frustration on the way to crystallization in glass. Nature Phys. 2, 200–206 (2006).

    Article  CAS  Google Scholar 

  37. Tanaka, H. Two-order-parameter description of liquids. I. A general model of glass transition covering its strong to fragile limit. J. Chem. Phys. 111, 3163–3174 (1999).

    Article  CAS  Google Scholar 

  38. Angell, C. A. et al. Potential energy, relaxation, vibrational dynamics and the boson peak, of hyperquenched glasses. J. Phys. Condens. Matter 15, S1051–S1068 (2003).

    Article  CAS  Google Scholar 

  39. Scopigno, T., Ruocco, G., Sette, F. & Monaco, G. Is the fragility of a liquid embedded in the properties of its glass? Science 302, 849–852 (2003).

    Article  CAS  Google Scholar 

  40. Ruocco, G. et al. Nondynamic origin of the high-frequency acoustic attenuation in glasses. Phys. Rev. Lett. 83, 5583–5586 (1999).

    Article  CAS  Google Scholar 

  41. Taraskin, S. N. & Elliott, S. R. Low-frequency vibrational excitations in vitreous silica: The Ioffe–Regel limit. J. Phys. Condens. Matter 11, A219–A227 (1999).

    Article  CAS  Google Scholar 

  42. Monaco, A. et al. Effect of densification on the density of vibrational states of glasses. Phys. Rev. Lett. 97, 135501 (2006).

    Article  CAS  Google Scholar 

  43. Andrikopoulos, K. S., Christofilos, D., Kourouklis, G. A. & Yannopoulos, S. N. Pressure dependence of the Boson peak in glassy As2S3 studied by Raman scattering. J. Non-Cryst. Solids 352, 4594–4600 (2006).

    Article  CAS  Google Scholar 

  44. Niss, K. et al. Influence of pressure on the Boson peak: Stronger than elastic medium transformation. Phys. Rev. Lett. 99, 055502 (2007).

    Article  CAS  Google Scholar 

  45. Caponi, S., Fontana, A., Rossi, F., Baldi, G. & Fabiani, E. Effect of temperature on the vibrational density of states in vitreous SiO2: A Raman study. Phys. Rev. B 76, 092201 (2007).

    Article  Google Scholar 

  46. Novikov, V. N., Ding, Y. & Sokolov, A. P. Correlation of fragility of supercooled liquids with elastic properties of glasses. Phys. Rev. E 71, 061501 (2005).

    Article  CAS  Google Scholar 

  47. Bove, L. E., Petrillo, C., Fontana, A. & Sokolov, A. P. Damping of sound waves in the terahertz range and strength of the boson peak. J. Chem. Phys. 128, 184502 (2008).

    Article  Google Scholar 

  48. Kawasaki, T., Araki, T. & Tanaka, H. Correlation between dynamic heterogeneity and medium-range order in two-dimensional glass-forming liquids. Phys. Rev. Lett. 99, 215701 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to T. Kawasaki for his help in the Voronoi analysis and thank D. A. Head for a critical reading of the manuscript. This work was partially supported by a grand-in-aid from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Contributions

H.T. conceived the project, H.S. carried out numerical simulations and H.S. and H.T. made the analysis and wrote the paper.

Corresponding author

Correspondence to Hajime Tanaka.

Supplementary information

Supplementary Information

Supplementary Information (PDF 269 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shintani, H., Tanaka, H. Universal link between the boson peak and transverse phonons in glass. Nature Mater 7, 870–877 (2008). https://doi.org/10.1038/nmat2293

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2293

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing