Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells

Abstract

Cell–matrix interactions have critical roles in regeneration, development and disease. The work presented here demonstrates that encapsulated human mesenchymal stem cells (hMSCs) can be induced to differentiate down osteogenic and adipogenic pathways by controlling their three-dimensional environment using tethered small-molecule chemical functional groups. Hydrogels were formed using sufficiently low concentrations of tether molecules to maintain constant physical characteristics, encapsulation of hMSCs in three dimensions prevented changes in cell morphology, and hMSCs were shown to differentiate in normal growth media, indicating that the small-molecule functional groups induced differentiation. To our knowledge, this is the first example where synthetic matrices are shown to control induction of multiple hMSC lineages purely through interactions with small-molecule chemical functional groups tethered to the hydrogel material. Strategies using simple chemistry to control complex biological processes would be particularly powerful as they could make production of therapeutic materials simpler, cheaper and more easily controlled.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Small-molecule incorporation alters hMSC protein expression on PEG hydrogels.
Figure 2: Small-molecule incorporation alters hMSC gene expression on PEG hydrogels.
Figure 3: hMSC morphology is altered in response to small-molecule incorporation into PEG hydrogels.
Figure 4: Encapsulation of hMSCs in phosphate- and t-butyl-functionalized PEG hydrogels induces MSC osteogenesis and adipogenesis, respectively.

Similar content being viewed by others

References

  1. Amis, E. J. Combinatorial materials science: Reaching beyond discovery. Nature Mater. 3, 83–85 (2004).

    Article  CAS  Google Scholar 

  2. Bianco, P., Riminucci, M., Gronthos, S. & Robey, P. G. Bone marrow stromal stem cells: Nature, biology, and potential applications. Stem Cells 19, 180–192 (2001).

    Article  CAS  Google Scholar 

  3. Meredith, J. C. et al. Combinatorial characterization of cell interactions with polymer surfaces. J. Biomed. Mater. Res. A 66, 483–490 (2003).

    Article  Google Scholar 

  4. Saha, K., Pollock, J. F., Schaffer, D. V. & Healy, K. E. Designing synthetic materials to control stem cell phenotype. Curr. Opin. Chem. Biol. 11, 381–387 (2007).

    Article  CAS  Google Scholar 

  5. Anderson, D. G., Levenberg, S. & Langer, R Nanoliter-scale synthesis of arrayed biomaterials and its application to human embryonic stem cells. Nature Biotechnol. 22, 863–866 (2004).

    Article  CAS  Google Scholar 

  6. Keselowsky, B. G., Collard, D. M. & Garcia, A. J. Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion. J. Biomed. Mater. Res. A 66, 247–259 (2003).

    Article  Google Scholar 

  7. Meyer, U. et al. Attachment kinetics and differentiation of osteoblasts on different biomaterials. Cells Mater. 3, 129–140 (1993).

    Google Scholar 

  8. Vanwachem, P. B. et al. Adhesion of cultured human-endothelial cells onto methacrylate polymers with varying surface wettability and charge. Biomaterials 8, 323–328 (1987).

    Article  CAS  Google Scholar 

  9. Webb, K., Hlady, V. & Tresco, P. A. Relative importance of surface wettability and charged functional groups on NIH 3T3 fibroblast attachment, spreading, and cytoskeletal organization. J. Biomed. Mater. Res. 41, 422–430 (1998).

    Article  CAS  Google Scholar 

  10. Nuttelman, C. R., Benoit, D. S. W., Tripodi, M. C. & Anseth, K. S. The effect of ethylene glycol methacrylate phosphate in PEG hydrogels on mineralization and viability of encapsulated hMSCs. Biomaterials 27, 1377–1386 (2006).

    Article  CAS  Google Scholar 

  11. Flaim, C. J., Chien, S. & Bhatia, S. N. An extracellular matrix microarray for probing cellular differentiation. Nature Methods 2, 119–125 (2005).

    Article  CAS  Google Scholar 

  12. Anderson, D. G., Putnam, D., Lavik, E. B., Mahmood, T. A. & Langer, R. Biomaterial microarrays: rapid, microscale screening of polymer-cell interaction. Biomaterials 26, 4892–4897 (2005).

    Article  CAS  Google Scholar 

  13. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    Article  CAS  Google Scholar 

  14. McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K. & Chen, C. S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6, 483–495 (2004).

    Article  CAS  Google Scholar 

  15. Caplan, A. I. Mesenchymal stem cells: Cell-based reconstructive therapy in orthopedics. Tissue Eng. 11, 1198–1211 (2005).

    Article  CAS  Google Scholar 

  16. Barry, F. P. & Murphy, J. M. Mesenchymal stem cells: clinical applications and biological characterization. Int. J. Biochem. Cell Biol. 36, 568–584 (2004).

    Article  CAS  Google Scholar 

  17. Kuo, C. K. & Tuan, R. S. Tissue engineering with mesenchymal stem cells. IEEE Eng. Med. Biol. Mag. 22, 51–56 (2003).

    Article  Google Scholar 

  18. Herring, G. M. Chemical structure of tendon cartilage dentin and bone matrix. Clin. Orthop. Rel. Res. 60, 261–299 (1968).

    Article  CAS  Google Scholar 

  19. Murphy, W. L. & Mooney, D. J. Bioinspired growth of crystalline carbonate apatite on biodegradable polymer substrata. J. Am. Chem. Soc. 124, 1910–1917 (2002).

    Article  CAS  Google Scholar 

  20. Goldrick, R. B. Morphological changes in adipocyte during fat deposition and mobilization. Am. J. Physiol. 212, 777–782 (1967).

    Article  CAS  Google Scholar 

  21. Reardon, M. F., Goldrick, R. B. & Fidge, N. H. Dependence of rates of lipolysis, esterification, and free fatty-acid release in isolated fat-cells on age, cell size, and nutritional state. J. Lipid Res. 14, 319–326 (1973).

    CAS  Google Scholar 

  22. Mackay, A. M. et al. Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng. 4, 415–428 (1998).

    Article  CAS  Google Scholar 

  23. Mayne, R., Vail, M. S., Mayne, P. M. & Miller, E. J. Changes in type of collagen synthesized as clones of chick chondrocytes grow and eventually lose division capacity. Proc. Natl Acad. Sci. USA 73, 1674–1678 (1976).

    Article  CAS  Google Scholar 

  24. Burdick, J. A. & Anseth, K. S. Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials 23, 4315–4323 (2002).

    Article  CAS  Google Scholar 

  25. Bryant, S. J. & Anseth, K. S. Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels. J. Biomed. Mater. Res. 59, 63–72 (2002).

    Article  CAS  Google Scholar 

  26. Beqaj, S., Jakkaraju, S., Mattingly, R. R., Pan, D. & Schuger, L. High RhoA activity maintains the undifferentiated mesenchymal cell phenotype, whereas RhoA down-regulation by laminin-2 induces smooth muscle myogenesis. J. Cell Biol. 156, 893–903 (2002).

    Article  CAS  Google Scholar 

  27. Chastain, S. R., Kundu, A. K., Dhar, S., Calvert, J. W. & Putnam, A. J. Adhesion of mesenchymal stem cells to polymer scaffolds occurs via distinct ECM ligands and controls their osteogenic differentiation. J. Biomed. Mater. Res. A 78, 73–85 (2006).

    Article  Google Scholar 

  28. Mandrup, S. & Lane, M. D. Regulating adipogenesis. J. Biol. Chem. 272, 5367–5370 (1997).

    Article  CAS  Google Scholar 

  29. Selvarajan, S., Lund, L. R., Takeuchi, T., Craik, C. S. & Werb, Z. A plasma kallikrein-dependent plasminogen cascade required for adipocyte differentiation. Nature Cell Biol. 3, 267–275 (2001).

    Article  CAS  Google Scholar 

  30. Smas, C. M. & Sul, H. S. Control of adipocyte differentiation. Biochem. J. 309, 697–710 (1995).

    Article  CAS  Google Scholar 

  31. Gregoire, F. M., Smas, C. M. & Sul, H. S. Understanding adipocyte differentiation. Physiol. Rev. 78, 783–809 (1998).

    Article  CAS  Google Scholar 

  32. Spiegelman, B. M. & Ginty, C. A. Fibronectin modulation of cell-shape and lipogenic gene-expression in 3t3-adipocytes. Cell 35, 657–666 (1983).

    Article  CAS  Google Scholar 

  33. Mann, B. K., Gobin, A. S., Tsai, A. T., Schmedlen, R. H. & West, J. L. Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering. Biomaterials 22, 3045–3051 (2001).

    Article  CAS  Google Scholar 

  34. Gobin, A. S. & West, J. L. Val-ala-pro-gly, an elastin-derived non-integrin ligand: Smooth muscle cell adhesion and specificity. J. Biomed. Mater. Res. A 67, 255–259 (2003).

    Article  Google Scholar 

  35. DeLong, S. A., Gobin, A. S. & West, J. L. Covalent immobilization of RGDS on hydrogel surfaces to direct cell alignment and migration. J. Control. Release 109, 139–148 (2005).

    Article  CAS  Google Scholar 

  36. Gobin, A. S. & West, J. L. Effects of epidermal growth factor on fibroblast migration through biomimetic hydrogels. Biotechnol. Prog. 19, 1781–1785 (2003).

    Article  CAS  Google Scholar 

  37. Benoit, D. S. W. & Anseth, K. S. The effect on osteoblast function of colocalized RGD and PHSRN epitopes on PEG surfaces. Biomaterials 26, 5209–5220 (2005).

    Article  CAS  Google Scholar 

  38. Masters, K. S., Shah, D. N., Walker, G., Leinwand, L. A. & Anseth, K. S. Designing scaffolds for valvular interstitial cells: Cell adhesion and function on naturally derived materials. J. Biomed. Mater. Res. A 71, 172–180 (2004).

    Article  Google Scholar 

  39. Benoit, D. S. W., Nuttelman, C. R., Collins, S. D. & Anseth, K. S. Synthesis and characterization of a fluvastatin-releasing hydrogel delivery system to modulate hMSC differentiation and function for bone regeneration. Biomaterials 27, 6102–6110 (2006).

    Article  CAS  Google Scholar 

  40. Benoit, D. S. W. & Anseth, K. S. Heparin functionalized PEG gels that modulate protein adsorption for hMSC adhesion and differentiation. Acta Biomater. 1, 461–470 (2005).

    Article  Google Scholar 

  41. Bryant, S. J., Arthur, J. A. & Anseth, K. S. Incorporation of tissue-specific molecules alters chondrocyte metabolism and gene expression in photocrosslinked hydrogels. Acta Biomater. 1, 243–252 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Institute of Health (DE016523). The authors would like to thank C. Bowman and H. Sikes for use of and assistance with the ChipWriter, K. Rowlen and E. Dawson for use of and help with the ChipReader, E. Kovacs for technical assistance associated with in situ hybridization and J. McCormick and S. George for assistance with the X-ray photoelectron spectroscopy studies. Fellowship assistance to D.S.W.B. was awarded by the US Department of Education’s Graduate Assistantships in Areas of National Need program and the National Science Foundation Graduate Research Fellowship program.

Author information

Authors and Affiliations

Authors

Contributions

D.S.W.B. and K.S.A. came up with the concept, D.S.W.B., M.P.S. and K.S.A. designed the experiments, D.S.W.B. and A.R.D. carried out the experiments and D.S.W.B., M.P.S. and K.S.A. wrote the paper.

Corresponding author

Correspondence to Kristi S. Anseth.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1506 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benoit, D., Schwartz, M., Durney, A. et al. Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nature Mater 7, 816–823 (2008). https://doi.org/10.1038/nmat2269

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2269

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing