Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Shaping binary metal nanocrystals through epitaxial seeded growth

Abstract

Morphological control of nanocrystals has become increasingly important, as many of their physical and chemical properties are highly shape dependent. Nanocrystal shape control for both single- and multiple-material systems, however, remains empirical and challenging. New methods need to be explored for the rational synthetic design of heterostructures with controlled morphology. Overgrowth of a different material on well-faceted seeds, for example, allows for the use of the defined seed morphology to control nucleation and growth of the secondary structure. Here, we have used highly faceted cubic Pt seeds to direct the epitaxial overgrowth of a secondary metal. We demonstrate this concept with lattice-matched Pd to produce conformal shape-controlled core–shell particles, and then extend it to lattice-mismatched Au to give anisotropic growth. Seeding with faceted nanocrystals may have significant potential towards the development of shape-controlled heterostructures with defined interfaces.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electron microscopy characterization of the shaped binary metal nanocrystals.
Figure 2: Phase constructions of a Pt/Pd cube showing a coherent and epitaxial interface between the cubic Pt core and Pd shell.
Figure 3: Epitaxial overgrowth of lattice-mismatched Au on cubic Pt seeds to give anisotropic growth of Au rods.
Figure 4: Catalytic activity of the Pt/Pd binary metal nanocrystals.

Similar content being viewed by others

References

  1. Milliron, D. J. et al. Colloidal nanocrystal heterostructures with linear and branched topology. Nature 430, 190–195 (2004).

    Article  CAS  Google Scholar 

  2. Kudera, S. et al. Selective growth of PbSe on one or both tips of colloidal semiconductor nanorods. Nano Lett. 5, 445–449 (2005).

    Article  CAS  Google Scholar 

  3. Buonsanti, R. et al. Seeded growth of asymmetric binary nanocrystals made of a semiconductor TiO2 rodlike section and a magnetic γ-Fe2O3 spherical domain. J. Am. Chem. Soc. 128, 16953–16970 (2006).

    Article  CAS  Google Scholar 

  4. Talapin, D. V. et al. Highly emissive colloidal CdSe/CdS heterostructures of mixed dimensionality. Nano Lett. 3, 1677–1681 (2003).

    Article  CAS  Google Scholar 

  5. Kwon, K.-W. & Shim, M. γ-Fe2O3/II-VI sulfide nanocrystal heterojunctions. J. Am. Chem. Soc. 127, 10269–10275 (2005).

    Article  CAS  Google Scholar 

  6. Kwon, K.-W., Lee, B. H. & Shim, M. Structural evolution in metal oxide/semiconductor colloidal nanocrystal heterostructures. Chem. Mater. 18, 6357–6363 (2006).

    Article  CAS  Google Scholar 

  7. Teranishi, T., Inoue, Y., Nakaya, M., Oumi, Y. & Sano, T. Nanoacorns: Anisotropically phase-segregated CoPd sulfide nanoparticles. J. Am. Chem. Soc. 126, 9914–9915 (2004).

    Article  CAS  Google Scholar 

  8. Mokari, T., Sztrum, C. G., Salant, A., Rabani, E. & Banin, U. Formation of asymmetric one-sided metal-tipped semiconductor nanocrystal dots and rods. Nature Mater. 4, 855–863 (2005).

    Article  CAS  Google Scholar 

  9. Shi, W. et al. A general approach to binary and ternary hybrid nanocrystals. Nano Lett. 6, 875–881 (2006).

    Article  CAS  Google Scholar 

  10. Yu, H. et al. Dumbbell-like bifunctional Au-Fe3O4 nanoparticles. Nano Lett. 5, 379–382 (2005).

    Article  CAS  Google Scholar 

  11. Gu, H., Zheng, R., Zhang, X. & Xu, B. Facile one-pot synthesis of bifunctional heterodimers of nanoparticles: A conjugate of quantum dot and magnetic nanoparticles. J. Am. Chem. Soc. 126, 5664–5665 (2004).

    Article  CAS  Google Scholar 

  12. Gu, H., Yang, Z., Gao, J., Chang, C. K. & Xu, B. Heterodimers of nanoparticles: Formation at a liquid-liquid interface and particle-specific surface modification by functional molecules. J. Am. Chem. Soc. 127, 34–35 (2005).

    Article  CAS  Google Scholar 

  13. Yang, J., Elim, H. I., Zhang, Q., Lee, J. Y. & Ji, W. Rational synthesis, self-assembly, and optical properties of PbS-Au heterogeneous nanostructures via preferential deposition. J. Am. Chem. Soc. 128, 11921–11926 (2006).

    Article  CAS  Google Scholar 

  14. Casavola, M. et al. Topologically controlled growth of magnetic-metal-functionalized semiconductor oxide nanorods. Nano Lett. 7, 1386–1395 (2007).

    Article  CAS  Google Scholar 

  15. Pacholski, C., Kornowski, A. & Weller, H. Nanomaterials: Site-specific photodeposition of silver on ZnO nanorods. Angew. Chem. Int. Edn 43, 4774–4777 (2004).

    Article  CAS  Google Scholar 

  16. Pellegrino, T. et al. Heterodimers based on CoPt3-Au nanocrystals with tunable domain size. J. Am. Chem. Soc. 128, 6690–6698 (2006).

    Article  CAS  Google Scholar 

  17. Gao, X., Yu, L., MacCuspie, R. I. & Matsui, H. Controlled growth of Se nanoparticles on Ag nanoparticles in different ratios. Adv. Mater. 17, 426–429 (2005).

    Article  CAS  Google Scholar 

  18. Xiang, Y. et al. Formation of rectangularly shaped Pd/Au bimetallic nanorods: Evidence for competing growth of the Pd shell between the {110} and {100} side facets of Au nanorods. Nano Lett. 6, 2290–2294 (2006).

    Article  CAS  Google Scholar 

  19. Krichevski, O., Tirosh, E. & Markovich, G. Formation of gold-silver nanowires in thin surfactant solution films. Langmuir 22, 867–870 (2006).

    Article  CAS  Google Scholar 

  20. Tsuji, M. et al. Crystal structures and growth mechanisms of Au@Ag core–shell nanoparticles prepared by the microwave-polyol method. Cryst. Growth Des. 6, 1801–1807 (2006).

    Article  CAS  Google Scholar 

  21. Sanedrin, R. G., Georganopoulou, D. G., Park, S. & Mirkin, C. A. Seed-mediated growth of bimetallic prisms. Adv. Mater. 17, 1027–1031 (2005).

    Article  CAS  Google Scholar 

  22. Kim, F., Connor, S., Song, H., Kuykendall, T. & Yang, P. Platonic gold nanocrystals. Angew. Chem. Int. Edn 43, 3673–3677 (2004).

    Article  CAS  Google Scholar 

  23. Song, H., Kim, F., Connor, S., Somorjai, G. A. & Yang, P. Pt nanocrystals: Shape control and Langmuir-Blodgett monolayer formation. J. Phys. Chem. B 109, 188–193 (2005).

    Article  CAS  Google Scholar 

  24. Tao, A., Sinsermsuksakul, P. & Yang, P. Polyhedral silver nanocrystals with distinct scattering signatures. Angew. Chem. Int. Edn 45, 4597–4601 (2006).

    Article  CAS  Google Scholar 

  25. Chen, J., Herricks, T. & Xia, Y. Polyol synthesis of platinum nanostructures: Control of morphology through the manipulation of reduction kinetics. Angew. Chem. Int. Edn 44, 2589–2592 (2005).

    Article  CAS  Google Scholar 

  26. Sau, T. K. & Murphy, C. J. Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J. Am. Chem. Soc. 126, 8648–8649 (2004).

    Article  CAS  Google Scholar 

  27. Wiley, B., Sun, Y., Mayers, B. & Xia, Y. Shape-controlled synthesis of metal nanostructures: The case of silver. Chem. Eur. J. 11, 454–463 (2005).

    Article  CAS  Google Scholar 

  28. Murphy, C. J. & Jana, N. R. Controlling the aspect ratio of inorganic nanorods and nanowires. Adv. Mater. 14, 80–82 (2002).

    Article  CAS  Google Scholar 

  29. Gole, A. & Murphy, C. J. Seed-mediated synthesis of gold nanorods: Role of the size and nature of the seed. Chem. Mater. 16, 3633–3640 (2004).

    Article  CAS  Google Scholar 

  30. Yong, K.-T. et al. Shape control of PbSe nanocrystals using noble metal seed particles. Nano Lett. 6, 709–714 (2006).

    Article  CAS  Google Scholar 

  31. Sun, Y., Yin, Y., Mayers, B. T., Herricks, T. & Xia, Y. Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem. Mater. 14, 4736–4745 (2002).

    Article  CAS  Google Scholar 

  32. Lee, H. et al. Morphological control of catalytically active platinum nanocrystals. Angew. Chem. Int. Edn 45, 7824–7828 (2006).

    Article  CAS  Google Scholar 

  33. Banse, B. A. & Koel, B. E. Interaction of oxygen with palladium(111): High effective oxygen pressure conditions by using nitrogen dioxide. Surf. Sci. 232, 275–285 (1990).

    Article  CAS  Google Scholar 

  34. Somorjai, G. A. Introduction to Surface Chemistry and Catalysis (Wiley, New York, 1994).

    Google Scholar 

  35. Veisz, B. & Kiraly, Z. Size-selective synthesis of cubooctahedral palladium particles mediated by metallomicelles. Langmuir 19, 4817–4824 (2003).

    Article  CAS  Google Scholar 

  36. Pileni, M.-P. The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nature Mater. 2, 145–150 (2003).

    Article  CAS  Google Scholar 

  37. Johnson, C. J., Dujardin, E., Davis, S. A., Murphy, C. J. & Mann, S. Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis. J. Mater. Chem. 12, 1765–1770 (2002).

    Article  CAS  Google Scholar 

  38. Lamy, C. & Leger, J. M. Electrocatalytic oxidation of small organic molecules at platinum single crystals. J. Chim. Phys. 88, 1649–1671 (1991).

    Article  CAS  Google Scholar 

  39. Markovic, N. M. & Ross, P. N. Surface science studies of model fuel cell electrocatalysts. Surf. Sci. Rep. 45, 117–229 (2002).

    Article  CAS  Google Scholar 

  40. Baldauf, M. & Kolb, D. M. Formic acid oxidation on ultrathin Pd films on Au(hlk) and Pt(hkl) electrodes. J. Phys. Chem. 100, 11375–11381 (1996).

    Article  CAS  Google Scholar 

  41. Hoshi, N., Kida, K., Nakamura, M., Nakada, M. & Osada, K. Structural effects of electrochemical oxidation of formic acid on single crystal electrodes of palladium. J. Phys. Chem. B 110, 12480–12484 (2006).

    Article  CAS  Google Scholar 

  42. Niesz, K., Grass, M. & Somorjai, G. A. Precise control of the Pt nanoparticle size by seeded growth using EO13PO30EO13 triblock copolymers as protective agents. Nano Lett. 5, 2238–2240 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy under Contract #DE-AC02-05CH11231. All TEM investigations, with the exception of those done on the Tecnai G2 S-Twin, were carried out at the National Center for Electron Microscopy, Lawrence Berkeley National Lab. We would also like to thank T. R. Kuykendall for the SEM work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peidong Yang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1-S4 (PDF 789 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Habas, S., Lee, H., Radmilovic, V. et al. Shaping binary metal nanocrystals through epitaxial seeded growth. Nature Mater 6, 692–697 (2007). https://doi.org/10.1038/nmat1957

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1957

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing