Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Coherent orbital waves in the photo-induced insulator–metal dynamics of a magnetoresistive manganite

Abstract

Photo-excitation can drive strongly correlated electron insulators into competing conducting phases1,2, resulting in giant and ultrafast changes of their electronic and magnetic properties. The underlying non-equilibrium dynamics involve many degrees of freedom at once, whereby sufficiently short optical pulses can trigger the corresponding collective modes of the solid along temporally coherent pathways. The characteristic frequencies of these modes range between the few GHz of acoustic vibrations3 to the tens or even hundreds of THz for purely electronic excitations. Virtually all experiments so far have used 100 fs or longer pulses, detecting only comparatively slow lattice dynamics4,5. Here, we use sub-10-fs optical pulses to study the photo-induced insulator–metal transition in the magnetoresistive manganite Pr0.7Ca0.3MnO3. At room temperature, we find that the time-dependent pathway towards the metallic phase is accompanied by coherent 31 THz oscillations of the optical reflectivity, significantly faster than all lattice vibrations. These high-frequency oscillations are suggestive of coherent orbital waves6,7, crystal-field excitations triggered here by impulsive stimulated Raman scattering. Orbital waves are likely to be initially localized to the small polarons of this room-temperature manganite, coupling to other degrees of freedom at longer times, as photo-domains coalesce into a metallic phase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Time-resolved measurement of the nanosecond conductivity transients induced by photo-excitation in single-crystal Pr0.7Ca0.3MnO3 at 77 K.
Figure 2: Femtosecond optical reflectivity measurements of Pr0.7Ca0.3MnO3 at 77 K.
Figure 3: Excitation process in Pr0.7Ca0.3MnO3 in the 2.5 eV photon-energy range.
Figure 4: Femtosecond optical reflectivity measurements of Pr0.7Ca0.3MnO3 at 300 K.

Similar content being viewed by others

References

  1. Myiano, K., Tanaka, T., Tomioka, Y. & Tokura, Y. Photo-induced insulator–metal transition in a perovskite manganite. Phys. Rev. Lett. 78, 4257–4260 (1997).

    Article  Google Scholar 

  2. Cavalleri, A. et al. Femtosecond structural dynamics in VO2 during a femtosecond solid–solid phase transition? Phys. Rev. Lett. 87, 237401–237404 (2001).

    Article  CAS  Google Scholar 

  3. Cavalleri, A. et al. Anharmonic lattice dynamics in germanium measured with ultrafast X-ray diffraction. Phys. Rev. Lett. 85, 586–589 (2000).

    Article  CAS  Google Scholar 

  4. Chollet, M. et al. Gigantic photoresponse in 1/4-filled-band organic salt (EDO-TTF)2PF6 . Science 307, 86–89 (2005).

    Article  CAS  Google Scholar 

  5. Okamoto, H. et al. Ultrafast photoinduced melting of a spin-Peierls phase in an organic charge-transfer compound, K-tetracyanoquinodimethane. Phys. Rev. Lett. 96, 037405–037408 (2006).

    Article  CAS  Google Scholar 

  6. van der Brink, J., Horsch, P., Mack, F. & Oles, A. M. Orbital dynamics in ferromagnetic transition-metal oxides. Phys. Rev. B 59, 6795–6805 (1999).

    Article  Google Scholar 

  7. Feiner, L. F. & Oles, A. M. Electronic origin of magnetic and orbital ordering in insulating LaMnO3 . Phys. Rev. B 59, 3295–3298 (1999).

    Article  CAS  Google Scholar 

  8. Dagotto, E. Nanoscale Phase Separation and Colossal Magnetoresistance (Springer, Berlin, 2003).

    Book  Google Scholar 

  9. Goodenough, J. B. Theory of the role of covalence in the perovskite-type manganites [La,M(II)]MnO3 . Phys. Rev. 100, 564–573 (1955).

    Article  CAS  Google Scholar 

  10. Zimmermann, M. v. et al. Interplay between charge, orbital, and magnetic order in Pr1−xCaxMnO3 . Phys. Rev. Lett. 83, 4872–4875 (1999).

    Article  Google Scholar 

  11. Millis, A. J., Littlewood, P. B. & Shraiman, B. I. Double exchange alone does not explain the resistivity of La1−xSrxMnO3 . Phys. Rev. Lett. 74, 5144–5147 (1995).

    Article  CAS  Google Scholar 

  12. Hwang, H. Y., Cheong, S. W., Radaelli, P. G., Marezio, M. & Battlog, B. Lattice effects on the magnetoresistance in doped LaMnO3 . Phys. Rev. Lett. 75, 914–917 (1995).

    Article  CAS  Google Scholar 

  13. Yoshizawa, H., Kawano, H., Tomioka, Y. & Tokura, Y. Neutron-diffraction study of the magnetic-field-induced metal-insulator transition in Pr0.7Ca0.3MnO3 . Phys. Rev. B 52, R13145 (1995).

    Article  Google Scholar 

  14. Fiebig, M., Miyano, K., Tomioka, Y. & Tokura, Y. Visualization of the local insulator–metal transition in Pr0.7Ca0.3MnO3 . Science 280, 1925–1928 (1998).

    Article  CAS  Google Scholar 

  15. Asamitsu, A., Tomioka, Y., Kuwahara, H. & Yokura, Y. Current switching of resistive states in magnetoresistive manganites. Nature 50, 388–390 (1997).

    Google Scholar 

  16. Kiryukhin, V. et al. An X-ray-induced insulator–metal transition in a magnetoresistive manganite. Nature 386, 813–815 (1997).

    Article  CAS  Google Scholar 

  17. Hervieu, M., Barnabé, A., Martin, C., Maignan, A. & Raveau, B. Charge disordering induced by electron irradiation in colossal magnetoresistant manganites. Phys. Rev. B 60, 726–729 (1999).

    Article  Google Scholar 

  18. Satoh, K. & Ishihara, S. Photo-induced phase transition in charge ordered perovskite manganites. J. Magn. Magn. Mater. 310, 798–800 (2007).

    Article  CAS  Google Scholar 

  19. Fiebig, M., Miyano, K., Tomioka, Y. & Tokura, Y. Reflection spectroscopy on the photoinduced local metallic phase of Pr0.7Ca0.3MnO3 . Appl. Phys. Lett. 74, 2310–2312 (1998).

    Article  Google Scholar 

  20. Okimoto, Y., Tomioka, Y., Onose, Y., Otsuka, Y. & Tokura, Y. Charge ordering and disordering transitions in Pr1−xCaxMnO3 (x=0.4) as investigated by optical spectroscopy. Phys. Rev. B 57, 9377–9380 (1998).

    Article  Google Scholar 

  21. Cavalleri, A., Dekorsy, Th., Chong, H. H. W., Kieffer, J. C. & Schoenlein, R. W. Evidence for a structurally-driven insulator-to-metal transition in VO2: A view from the ultrafast timescale. Phys. Rev. B 70, 161102–161106(R) (2004).

    Article  Google Scholar 

  22. Yamamoto, K., Kimura, T., Ishikawa, T., Katsufuji, T. & Tokura, Y. Raman spectroscopy of the charge-orbital ordering in layered manganites. Phys. Rev. B 61, 14706–14715 (2001).

    Article  Google Scholar 

  23. Garret, G. A., Albrecht, T. F., Whitaker, J. F. & Merlin, R. Coherent THz phonons driven by light pulses and the Sb problem: What is the mechanism? Phys. Rev Lett. 77, 3661–3664 (1996).

    Article  Google Scholar 

  24. Dougherty, T. P., Wiederrecht, G. P. & Nelson, K. A. Impulsive stimulated Raman scattering experiments in the polariton regime. J. Opt. Soc. Am. B 9, 2179–2189 (1992).

    Article  CAS  Google Scholar 

  25. Stevens, T. E., Kuhl, J. & Merlin, R. Coherent phonon generation and the two stimulated Raman tensors. Phys. Rev. B 65, 144304–144307 (2002).

    Article  Google Scholar 

  26. Nelson, C. S. et al. Correlated polarons in dissimilar perovskite manganites. Phys. Rev. B 64, 174405–174410 (2001).

    Article  Google Scholar 

  27. Saitoh, E. et al. Observation of orbital waves as elementary excitations in a solid. Nature 410, 180–182 (2001).

    Article  CAS  Google Scholar 

  28. Ulrich, C. et al. Raman scattering in the Mott insulators LaTiO3 and YTiO3: Evidence for orbital excitations. Phys. Rev. Lett. 97, 157401–157403 (2006).

    Article  CAS  Google Scholar 

  29. Grüninger, M. et al. Orbital physics (communication arising): Experimental quest for orbital waves. Nature 418, 39 (2002).

    Article  Google Scholar 

  30. Allen, P. B. & Prebeinov, V. Multiphonon resonant Raman scattering predicted in LaMnO3 from the Franck–Condon process via self-trapped excitons. Phys. Rev. B 64, 085118–085123 (1999).

    Google Scholar 

  31. Garret, G. A., Rojo, A. G., Sood, A. K., Whitaker, J. F. & Merlin, R. Vacuum squeezing of solids: Macroscopic quantum states driven by light pulses. Science 275, 1638–1640 (1997).

    Article  Google Scholar 

  32. Bartels, A., Dekorsy, Th. & Kurz, H. Impulsive excitation of phonon-pair combination states by second-order Raman scattering. Phys. Rev. Lett. 84, 2981–2984 (2000).

    Article  CAS  Google Scholar 

  33. Cavalleri, A. et al. Tracking the motion of charges in a terahertz light field by femtosecond X-ray diffraction. Nature 442, 644–646 (2006).

    Article  Google Scholar 

  34. Cavalleri, A. et al. Band-selective measurements of electron dynamics in VO2 using femtosecond near-edge X-ray absorption. Phys. Rev. Lett. 95, 67405–67408 (2005).

    Article  CAS  Google Scholar 

  35. Manzoni, C., Polli, D. & Cerullo, G. Two-color pump–probe system broadly tunable over the visible and the near infrared with sub-30 fs temporal resolution. Rev. Sci. Instrum. 77, 023103 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the following colleagues for discussions: P. B. Allen, E. Dagotto, M. Grueninger, A. T. Boothroyd. Work at the University of Oxford was supported by the European Science Foundation through a European Young Investigator Award, and by Oxford University Press through a John Fell Award. S.W. and A.C. acknowledge support from the European Community Access to research infrastructure action of the Improving Human Potential Programme (LASERLAB Europe). Work at Lawrence Berkeley National Laboratory was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. Polli, M. Rini, S. Wall or A. Cavalleri.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polli, D., Rini, M., Wall, S. et al. Coherent orbital waves in the photo-induced insulator–metal dynamics of a magnetoresistive manganite. Nature Mater 6, 643–647 (2007). https://doi.org/10.1038/nmat1979

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1979

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing