Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nano-chessboard superlattices formed by spontaneous phase separation in oxides

Abstract

The use of bottom-up fabrication of nanostructures for nanotechnology inherently requires two-dimensional control of the nanostructures at a particular surface. This could in theory be achieved crystallographically with a structure whose three-dimensional unit cell has two or more—tuneable—dimensions on the nanometre scale. Here, we present what is to our knowledge the first example of a truly periodic two-dimensional nanometre-scale phase separation in any inorganic material, and demonstrate our ability to tune the unit-cell dimensions. As such, it represents great potential for the use of standard ceramic processing methods for nanotechnology. The phase separation occurs spontaneously in the homologous series of the perovskite-based Li-ion conductor, (Nd2/3−xLi3x)TiO3, to give two phases whose dimensions both extend into the nanometre scale. This unique feature could lead to its application as a template for the assembly of nanostructures or molecular monolayers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TEM images of chessboard- and diamond-type superlattice contrast.
Figure 2: Superlattice periodicity as a function of composition.
Figure 3: Average supercell X/Y values plotted as a function of Li fraction as given by nominal composition.
Figure 4: Structure of the supercell.
Figure 5: Schematic diagram of the mixed cation/vacancy layer in a single-unit supercell, dimensions 18ap×28bp×2cp, representing a single slice of the crystal perpendicular to the z axis.

Similar content being viewed by others

References

  1. Huang, Y., Duan, X., Wei, Q. & Lieber, C. M. Directed assembly of one-dimensional nanostructures into functional networks. Science 291, 630–633 (2001).

    Article  CAS  Google Scholar 

  2. Shevchenko, E. V., Talapin, D. V., Kotov, N. A., O’Brien, S. & Murray, C. B. Structural diversity in binary nanoparticle superlattices. Nature 439, 55–59 (2006).

    Article  CAS  Google Scholar 

  3. Stubican, V. S. & Schultz, A. H. Spinodal decomposition in the system TiO2–SnO2 . J. Am. Ceram. Soc. 51, 290–291 (1968).

    Article  CAS  Google Scholar 

  4. Stubican, V. S. & Schultz, A. H. Phase separation by spinodal decomposition in the tetragonal system. J. Am. Ceram. Soc. 53, 211–214 (1970).

    Article  CAS  Google Scholar 

  5. Kuo, S.-Y. & Virkar, A. V. Morphology of phase separation in AlN–Al2OC and SiC-AlN ceramics. J. Am. Ceram. Soc. 73, 2640–2646 (1990).

    Article  CAS  Google Scholar 

  6. Heuer, A. H. Transformation toughening in ZrO2-containing ceramics. J. Am. Ceram. Soc. 70, 689–698 (1987).

    Article  CAS  Google Scholar 

  7. Kuo, S.-Y. & Virkar, A. V. Modulated structures in SiC-AlN ceramics. J. Am. Ceram. Soc. 70, C-125–C-128 (1987).

    Article  Google Scholar 

  8. Chen, J., Tian, Q. & Virkar, A. V. Phase separation in the SiC-AlN pseudobinary system: The role of coherency strain energy. J. Am. Ceram. Soc. 75, 809–821 (1992).

    Article  CAS  Google Scholar 

  9. Le Bouar, Y., Loiseau, A. & Khachaturyan, A. G. Origin of chessboard-like structures in decomposing alloys, theoretical model and computer simulation. Acta Mater. 46, 2777–2788 (1998).

    Article  CAS  Google Scholar 

  10. Yeo, S. et al. Solid state self-assembly of nanocheckerboards. Appl. Phys. Lett. 89, 233120 (2006).

    Article  Google Scholar 

  11. Varez, A., Garcia-Alvarado, F., Moran, E. & Alario-Franco, M. A. Microstructural study of La0.5Li0.5TiO3 . J. Solid State Chem. 118, 78–83 (1995).

    Article  CAS  Google Scholar 

  12. Garcia-Martin, S., Garcia-Alvarado, F., Robertson, A. D., West, A. R. & Alario-Franco, M. A. Microstructural study of the Li+ ion substituted perovskites Li0.5−3xNd0.5+xTiO3 . J. Solid State Chem. 128, 97–101 (1997).

    Article  CAS  Google Scholar 

  13. Wang, G. X., Yao, P., Bradhurst, D. H., Dou, S. X. & Liu, H. K. Structure characterisation and lithium insertion in La0.33NbO3 perovskite. Solid State Ion. 124, 37–43 (1999).

    Article  CAS  Google Scholar 

  14. Morata-Orrantia, A., Garcia-Martin, S., Moran, E., Amador, U. & Alario-Franco, M. A. (Rare earth/Li) titanates and niobates as ionic conductors. Mater. Res. Soc. Symp. Proc. 658, GG2.3.1-GG2.3.6 (2001).

    Google Scholar 

  15. Lee, H. J. et al. Microstructures in complex perovskite (Li1/2Ln1/2)TiO3(Ln=Pr,Nd,Sm). Jpn. J. Appl. Phys. 43, 7592–7595 (2004).

    Article  CAS  Google Scholar 

  16. Davies, P. K. Cation ordering in complex oxides. Curr. Opin. Solid State Mater. Sci. 4, 467–471 (1999).

    Article  Google Scholar 

  17. Rooksby, H. P., White, E. A. D. & Langston, S. A. Perovskite-type rare-earth niobates and tantalates. J. Am. Ceram. Soc. 48, 447–449 (1965).

    Article  CAS  Google Scholar 

  18. Iyer, P. N. & Smith, A. J. Double oxides containing niobium, tantalum, or proctactinium. III. Systems involving the rare earths. Acta Crystallogr. 23, 740–746 (1967).

    Article  CAS  Google Scholar 

  19. Robertson, A. D., Martin, S. G., Coats, A. & West, A. R. Phase diagrams and crystal chemistry in the Li+ ion conducting perovskites, Li0.5−3xRE0.5+xTiO3: RE=La,Nd. J. Mater. Chem. 5, 1405–1412 (1995).

    Article  CAS  Google Scholar 

  20. Yu, Z., Muller, D. A. & Silcox, J. Study of strain fields at a-Si/c-Si interface. J. Appl. Phys. 95, 3362–3371 (2004).

    Article  CAS  Google Scholar 

  21. Alonso, J. A. et al. On the location of Li+ cations in the fast Li-cation conductor La0.5Li0.5TiO3 perovskite. Angew. Chem. Int. Edn 39, 619–621 (2000).

    Article  CAS  Google Scholar 

  22. Sommariva, M. & Catti, M. Neutron diffraction study of quenched Li0.3La0.567TiO3 lithium ion conducting perovskite. Chem. Mater. 18, 2411–2417 (2006).

    Article  CAS  Google Scholar 

  23. Garcia-Martin, S. & Alario-Franco, M. A. Modulated structure of La1/3−xLi3xNbO3 0≤x≤0.06 perovskite-related materials. J. Solid State Chem. 148, 93–99 (1999).

    Article  CAS  Google Scholar 

  24. Labeau, M., Grey, I. E., Joubert, J. C., Vincent, H. & Alario-Franco, M. A. Structural studies on A-cation-deficient perovskite-related phases. II. Microdomain formation in ThNb4O12 . Acta Crystallogr. A 38, 753–761 (1982).

    Article  Google Scholar 

  25. Glazer, A. M. The classification of tilted octahedra in perovskites. Acta Crystallogr. B 28, 3384–3392 (1972).

    Article  CAS  Google Scholar 

  26. Veblen, D. R. Polysomatism and polysomatic series: A review and applications. Am. Mineral. 76, 801–826 (1991).

    CAS  Google Scholar 

  27. Davies, P. K. & Akaogi, M. Phase intergrowths in spinelloids. Nature 305, 788–790 (1983).

    Article  CAS  Google Scholar 

  28. White, T. J. & Hyde, B. G. Electron microscope study of the humite minerals: I. Mg-rich specimens. Phys. Chem. Minerals 8, 55–63 (1982).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank I.-W. Chen, A. Rappe, I. Levin, J. Kikkawa and H. Wu for discussions and D. M. Yates for technical support. This work was supported by the MRSEC Program of the National Science Foundation under award # DMR05-20020.

Author information

Authors and Affiliations

Authors

Contributions

B.S.G. carried out the synthesis and characterization and wrote the paper. P.K.D. initiated and supervised the work and commented on the manuscript.

Corresponding authors

Correspondence to Beth S. Guiton or Peter K. Davies.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary tables 1-3 (PDF 178 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guiton, B., Davies, P. Nano-chessboard superlattices formed by spontaneous phase separation in oxides. Nature Mater 6, 586–591 (2007). https://doi.org/10.1038/nmat1953

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1953

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing