Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ice nanoclusters at hydrophobic metal surfaces

Abstract

Studies of the structure of supported water clusters provide a means for obtaining a rigorous molecular-scale description of the initial stages of heterogeneous ice nucleation: a process of importance to fields as diverse as atmospheric chemistry, astrophysics and biology. Here, we report the observation and characterization of metal-supported water hexamers and a family of hydrated nanoclusters—heptamers, octamers and nonamers—through a combination of low-temperature scanning tunnelling microscopy experiments and first-principles electronic-structure calculations. Aside from achieving unprecedented resolution of the cyclic water hexamer—the so-called smallest piece of ice—we identify and explain a hitherto unknown competition between the ability of water molecules to simultaneously bond to a substrate and to accept hydrogen bonds. This competition also rationalizes previous structure predictions for water clusters on other substrates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Selected STM images of adsorbed water clusters on Cu and Ag.
Figure 2: High-resolution STM images of adsorbed water clusters.
Figure 3: Optimized structures and selected distances (Å) obtained from DFT for H2O clusters on Cu(111).
Figure 4: Electronic structures of water hexamers on Cu(111).
Figure 5: Structures of model water bilayers on metal surfaces and some typical structures of small adsorbed water clusters.

Similar content being viewed by others

References

  1. Ball, P. H2O: A Biography of Water (Weidenfeld & Nicolson, London, 1999).

    Google Scholar 

  2. Murray, B. J., Knopf, D. A. & Bertram, K. The formation of cubic ice under conditions relevant to Earth’s atmosphere. Nature 434, 202–205 (2005).

    Article  CAS  Google Scholar 

  3. Abbatt, J. P. D. et al. Solid ammonium sulfate aerosols as ice nuclei: A pathway for cirrus cloud formation. Science 313, 1770–1773 (2006).

    Article  CAS  Google Scholar 

  4. Doxey, A. C., Yaish, M. Y., Griffith, M. & McConkey, B. J. Ordered surface carbons distinguish antifreeze proteins and their ice-binding regions. Nature Biotechnol. 24, 852–855 (1996).

    Article  Google Scholar 

  5. Mitsui, T., Rose, M. K., Fomin, E., Ogletree, D. F. & Salmeron, M. Water diffusion and clustering on Pd(111). Science 297, 1850–1852 (2002).

    Article  CAS  Google Scholar 

  6. Verdaguer, A., Sacha, G. M., Bluhm, H. & Salmeron, M. Molecular structure of water at interfaces: Wetting at the nanometer scale. Chem. Rev. 106, 1478–1510 (2006).

    Article  CAS  Google Scholar 

  7. Ranea, V. A. et al. Water dimer diffusion on Pd{111} assisted by H-bond donor-acceptor tunneling exchange. Phys. Rev. Lett. 92, 136104 (2004).

    Article  CAS  Google Scholar 

  8. Meng, S., Xu, L. F., Wang, E. G. & Gao, S. W. Vibrational recognition of hydrogen-bonded water networks on a metal surface. Phys. Rev. Lett. 91, 059602 (2003).

    Article  Google Scholar 

  9. Thiel, P. A. & Madey, T. E. The interaction of water with solid-surfaces—fundamental-aspects. Surf. Sci. Rep. 7, 211–385 (1987).

    Article  CAS  Google Scholar 

  10. Henderson, M. A. The interaction of water with solid surfaces: Fundamental aspects revisited. Surf. Sci. Rep. 46, 5–308 (2002).

    Article  Google Scholar 

  11. Morgenstern, K. & Rieder, K. H. Formation of the cyclic ice hexamer via excitation of vibrational molecular modes by the scanning tunneling microscope. J. Chem. Phys. 116, 5746–5752 (2002).

    Article  CAS  Google Scholar 

  12. Morgenstern, K. & Nieminen, J. Intermolecular bond length of ice on Ag(111). Phys. Rev. Lett. 88, 066102 (2002).

    Article  Google Scholar 

  13. Morgenstern, M., Michely, T. & Comsa, G. Anisotropy in the adsorption of H2O at low coordination sites on Pt(111). Phys. Rev. Lett. 77, 703 (1996).

    Article  CAS  Google Scholar 

  14. Yamada, T., Tamamori, S., Okuyama, H. & Aruga, T. Anisotropic water chain growth on Cu(110) observed with scanning tunneling microscopy. Phys. Rev. Lett. 96, 036105 (2006).

    Article  CAS  Google Scholar 

  15. Cerdá, J. et al. Novel water overlayer growth on Pd(111) characterized with scanning tunneling microscopy and density functional theory. Phys. Rev. Lett. 93, 116101 (2004).

    Article  Google Scholar 

  16. Nauta, K. & Miller, R. E. Formation of cyclic water hexamer in liquid helium: The smallest piece of ice. Science 287, 293–295 (2000).

    Article  CAS  Google Scholar 

  17. Nutt, D. R. & Stone, A. J. Adsorption of water on the BaF2(111) surface. J. Chem. Phys. 117, 800–807 (2002).

    Article  CAS  Google Scholar 

  18. Meng, S., Wang, E. G. & Gao, S. W. Water adsorption on metal surfaces: A general picture from density functional theory studies. Phys. Rev. B 69, 195404 (2004).

    Article  Google Scholar 

  19. Park, J. M., Cho, J. H. & Kim, K. S. Atomic structure and energetics of adsorbed water on the NaCl(001) surface. Phys. Rev. B 69, 233403 (2004).

    Article  Google Scholar 

  20. Sebastiani, D. & Delle Site, L. Adsorption of water molecules on flat and stepped nickel surfaces from first principles. J. Chem. Theor. Comp. 1, 78–82 (2005).

    Article  CAS  Google Scholar 

  21. Yang, Y., Meng, S. & Wang, E. G. Water adsorption on a NaCl (001) surface: A density functional theory study. Phys. Rev. B 74, 245409 (2006).

    Article  Google Scholar 

  22. Doering, D. L. & Madey, T. E. The adsorption of water on clean and oxygen-dosed Ru(001). Surf. Sci. 123, 305–337 (1982).

    Article  CAS  Google Scholar 

  23. Ogasawara, H. et al. Structure and bonding of water on Pt(111). Phys. Rev. Lett. 89, 276102 (2002).

    Article  CAS  Google Scholar 

  24. Michaelides, A. Density functional theory simulations of water-metal interfaces: Waltzing waters, a novel 2D ice phase, and more. Appl. Phys. A 85, 415–425 (2006).

    Article  CAS  Google Scholar 

  25. Michaelides, A., Alavi, A. & King, D. A. Different surface chemistries of water on Ru{0001}: From monomer adsorption to partially dissociated bilayers. J. Am. Chem. Soc. 125, 2746–2755 (2003).

    Article  CAS  Google Scholar 

  26. Clay, C. & Hodgson, A. Water and mixed OH/water adsorption at close packed metal surfaces. Curr. Opin. Solid State Mater. Sci. 9, 11–18 (2005).

    Article  CAS  Google Scholar 

  27. Haq, S., Clay, C., Darling, G. R. & Hodgson, A. Growth of intact water ice on Ru(0001) between 140 and 160 K: Experiment and density-functional theory calculations. Phys. Rev. B 73, 115414 (2006).

    Article  Google Scholar 

  28. Schiros, T. et al. Structure of water adsorbed on the open Cu(110) surface: H-up, H-down, or both? Chem. Phys. Lett. 429, 415–419 (2006).

    Article  CAS  Google Scholar 

  29. Tersoff, J. & Hamann, D. R. Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805 (1985).

    Article  CAS  Google Scholar 

  30. Ireta, J., Neugebauer, J. & Scheffler, M. On the accuracy of DFT for describing hydrogen bonds: Dependence on the bond directionality. J. Phys. Chem. A 108, 5692–5698 (2004).

    Article  CAS  Google Scholar 

  31. Dahlke, E. E. & Truhlar, D. G. Improved density functionals for water. J. Phys. Chem. B 109, 15677–15683 (2005).

    Article  CAS  Google Scholar 

  32. Adamo, C. & Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 110, 6158–6170 (1999).

    Article  CAS  Google Scholar 

  33. Stephens, J., Devlin, F. J., Chabalowski, C. F. & Frisch, M. J. Ab-initio calculation of vibrational absorption and circular-dichroism spectra using density-functional force-fields. J. Phys. Chem. 98, 11623–11627 (1994).

    Article  CAS  Google Scholar 

  34. Xantheas, S. S., Burnham, C. J. & Harrison, R. J. Development of transferable interaction models for water. II. Accurate energetics of the first few water clusters from first principles. J. Chem. Phys. 116, 1493–1499 (2002).

    Article  CAS  Google Scholar 

  35. Morgenstern, K. & Nieminen, J. Imaging water on Ag(111): Field induced reorientation and contrast inversion. J. Chem. Phys. 120, 10786–10791 (2004).

    Article  CAS  Google Scholar 

  36. Filhol, J.-S. & Bocquet, M.-L. Charge control of the water monolayer/Pd interface. Chem. Phys. Lett. 438, 203–207 (2007).

    Article  CAS  Google Scholar 

  37. Nilsson, A. et al. The hydrogen bond in ice probed by soft x-ray spectroscopy and density functional theory. J. Chem. Phys. 122, 154505 (2005).

    Article  CAS  Google Scholar 

  38. Michaelides, A., Alavi, A. & King, D. A. Insight into H2O-ice adsorption and dissociation on metal surfaces from first-principles simulations. Phys. Rev. B 69, 113404 (2004).

    Article  Google Scholar 

  39. Michaelides, A., Ranea, V. A., de Andres, P. L. & King, D. A. General model for water monomer adsorption on close-packed transition and noble metal surfaces. Phys. Rev. Lett. 90, 216102 (2003).

    Article  CAS  Google Scholar 

  40. Ayotte, P., Weddle, G. H. & Johnson, M. A. An infrared study of the competition between hydrogen-bond networking and ionic solvation: Halide-dependent distortions of the water trimer in the X-center dot(H2O)(3), (X=Cl, Br, I) systems. J. Chem. Phys. 110, 7129–7132 (1999).

    Article  CAS  Google Scholar 

  41. Näslund, L.-A. et al. Direct evidence of orbital mixing between water and solvated transition-metal ions: An oxygen 1s XAS and DFT study of aqueous systems. J. Phys. Chem. A 107, 6869–6876 (2003).

    Article  Google Scholar 

  42. Robertson, W. H., Diken, E. G., Price, E. A., Shin, J.-W. & Johnson, M. A. Spectroscopic determination of the OH- solvation shell in the OH-center dot(H2O)(n) clusters. Science 299, 1367–1372 (2003).

    Article  CAS  Google Scholar 

  43. Cabera-Sanfelix, P., Holloway, S., Kolasinski, K. W. & Darling, G. R. The structure of water on the (0001) surface of graphite. Surf. Sci. 532, 166–172 (2003).

    Article  Google Scholar 

  44. Lin, C. S. et al. Simulation of water cluster assembly on a graphite surface. J. Phys. Chem. B 109, 14183–14188 (2005).

    Article  CAS  Google Scholar 

  45. Mehlhorn, M., Gawronski, H., Nedelmann, L., Grujic, A. & Morgenstern, K. An instrument to investigate femtochemistry on metal surfaces in real space. Rev. Sci. Instrum. 78, 033905 (2007).

    Article  Google Scholar 

  46. Segall, M. D. et al. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 14, 2717–2744 (2002).

    Article  CAS  Google Scholar 

  47. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  48. Frisch, M. J. et al. Gaussian 03. Revision C.02 (Gaussian, Inc., Wallingford, 2004).

    Google Scholar 

Download references

Acknowledgements

We are grateful to M. Scheffler for valuable discussions. K.M. is grateful to the Deutsche Forschungsgemeinschaft (DFG) for a Heisenberg scholarship. This work was conducted as part of a EURYI scheme. See www.esf.org/euryi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelos Michaelides.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michaelides, A., Morgenstern, K. Ice nanoclusters at hydrophobic metal surfaces. Nature Mater 6, 597–601 (2007). https://doi.org/10.1038/nmat1940

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1940

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing