Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Zeolite A imidazolate frameworks

Abstract

Faujasite (FAU) and zeolite A (LTA) are technologically important porous zeolites (aluminosilicates) because of their extensive use in petroleum cracking and water softening1,2. Introducing organic units and transition metals into the backbone of these types of zeolite allows us to expand their pore structures, enhance their functionality and access new applications3,4. The invention of metal–organic frameworks and zeolitic imidazolate frameworks (ZIFs) has provided materials based on simple zeolite structures where only one type of cage is present5,6,7,8,9. However, so far, no metal–organic analogues based on FAU or LTA topologies exist owing to the difficulty imposed by the presence of two types of large cage (super- and β-cages for FAU, α- and β-cages for LTA). Here, we have identified a strategy to produce an LTA imidazolate framework in which both the link geometry and link–link interactions play a decisive structure-directing role. We describe the synthesis and crystal structures of three porous ZIFs that are expanded analogues of zeolite A; their cage walls are functionalized, and their metal ions can be changed without changing the underlying LTA topology. Hydrogen, methane, carbon dioxide and argon gas adsorption isotherms are reported and the selectivity of this material for carbon dioxide over methane is demonstrated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The positions of the nitrogen atoms in the imidazolate-type linkers are significant in determining which ZIF topology (SOD, RHO, diamond and LTA) is produced.
Figure 2: Cage constituents of the LTA topology.
Figure 3: X-ray single-crystal structure of ZIF-20 with the same LTA topology as zeolite A.
Figure 4: Gas adsorption isotherms of ZIF-20.

Similar content being viewed by others

References

  1. Van Bekkum, H., Flanigen, E. M., Jacobs, P. A. & Jansen, J. C. (eds) Introduction to Zeolite Science and Practice (Elsevier, Amsterdam, 2001).

  2. Breck, D. W. Zeolite Molecular Sieves (Wiley, New York, 1974).

    Google Scholar 

  3. Wight, A. P. & Davis, M. E. Design and preparation of organic-inorganic hybrid catalysts. Chem. Rev. 102, 3589–3614 (2002).

    Article  CAS  Google Scholar 

  4. Yamamoto, K., Sakata, Y., Nohara, Y., Takahashi, Y. & Tatsumi, T. Organic-inorganic hybrid zeolites containing organic frameworks. Science 300, 470–472 (2003).

    Article  CAS  Google Scholar 

  5. Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).

    Article  CAS  Google Scholar 

  6. Kitagawa, S., Kitaura, R. & Noro, S. Functional porous coordination polymers. Angew. Chem. Int. Edn 43, 2334–2375 (2004).

    Article  CAS  Google Scholar 

  7. Brant, J. A., Liu, Y., Sava, D. F., Beauchamp, D. & Eddaoudi, M. Single-metal-ion-based molecular building blocks (MBBs) approach to the design and synthesis of metal-organic assemblies. J. Mol. Struct. 796, 160–164 (2006).

    Article  CAS  Google Scholar 

  8. Zhang, J.-P. & Chen, X.-M. Crystal engineering of binary metal imidazolate and triazolate frameworks. Chem. Commun. 1689–1699 (2006).

  9. Park, K. S. et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl Acad. Sci. USA 103, 10186–10191 (2006).

    Article  CAS  Google Scholar 

  10. Huang, X.-C., Lin, Y.-Y., Zhang, J.-P. & Chen, X.-M. Ligand-directed strategy for zeolite-type metal-organic frameworks: Zinc(II) imidazolates with unusual zeolitic topologies. Angew. Chem. Int. Edn 45, 1557–1559 (2006).

    Article  CAS  Google Scholar 

  11. Lobo, R. F., Zones, S. I. & Davis, M. E. Structure-direction in zeolite synthesis. J. Inclusion Phenom. Mol. Recognit. Chem. 21, 47–78 (1995).

    CAS  Google Scholar 

  12. Corma, A., Rey, F., Rius, J., Sabater, M. J. & Valencia, S. Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites. Nature 431, 287–290 (2004).

    Article  CAS  Google Scholar 

  13. Baerlocher, C., Meier, W. M. & Olson, D. H. Atlas of Zeolite Framework Types 5th edn (Elsevier, Amsterdam, 2001).

    Google Scholar 

  14. Breck, D. W., Eversole, W. G., Milton, R. M., Reed, T. B. & Thomas, T. L. Crystalline zeolites. I. The properties of a new synthetic zeolite, type A. J. Am. Chem. Soc. 78, 5963–5971 (1956).

    Article  CAS  Google Scholar 

  15. Rettig, S. J., Sánchez, V., Storr, A., Thompson, R. C. & Trotter, J. Polybis(4-azabenzimidazolato)- iron(II) and -cobalt(II). 3-D single diamond-like framework materials which exhibit spin canting and ferromagnetic ordering at low temperatures. J. Chem. Soc., Dalton Trans. 3931–3937 (2000).

  16. Sugiyama, S. et al. AFM observation of double 4-rings on zeolite LTA crystals surface. Micropor. Mesopor. Mater. 28, 1–7 (1999).

    Article  CAS  Google Scholar 

  17. O’Keeffe, M. & Yaghi, O. M. Germanate zeolites: contrasting the behavior of germanate and silicate structures built from cubic T8O20 units (T=Ge or Si). Chem. Eur. J. 5, 2796–2801 (1999).

    Article  Google Scholar 

  18. Vishnyakov, A., Ravikovitch, P. I., Neimark, A. V., Bülow, M. & Wang, Q. M. Nanopore structure and sorption properties of Cu-BTC metal-organic framework. Nano Lett. 3, 713–718 (2003).

    Article  CAS  Google Scholar 

  19. Czepirski, L. & Jagiełło, J. Virial-type thermal equation of gas-solid adsorption. Chem. Eng. Sci. 44, 797–801 (1989).

    Article  CAS  Google Scholar 

  20. Rowsell, J. L. C. & Yaghi, O. M. Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. J. Am. Chem. Soc. 128, 1304–1315 (2006).

    Article  CAS  Google Scholar 

  21. Dincă, M., Yu, A. F. & Long, J. R. Microporous metal-organic frameworks incorporating 1,4-benzeneditetrazolate: syntheses, structures, and hydrogen storage properties. J. Am. Chem. Soc. 128, 8904–8913 (2006).

    Article  Google Scholar 

  22. Samanta, A., Furuta, T. & Li, J. Theoretical assessment of the elastic constants and hydrogen storage capacity of some metal-organic framework materials. J. Chem. Phys. 125, 084714 (2006).

    Article  Google Scholar 

  23. Sircar, S. Basic research needs for design of adsorptive gas separation processes. Ind. Eng. Chem. Res. 45, 5435–5448 (2006).

    Article  CAS  Google Scholar 

  24. Ockwig, N. W., Delgado-Friedrichs, O., O’Keeffe, M. & Yaghi, O. M. Reticular chemistry: Occurrence and taxonomy of nets and grammar for the design of frameworks. Acc. Chem. Res. 38, 176–182 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by BASF Ludwigshafen, Germany, US Department of Energy (DEFG0206ER15813) and Japan Society for Promotion of Science (Postdoctoral Fellowship, H.H.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hideki Hayashi or Omar M. Yaghi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary sections S1-S5 (PDF 680 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayashi, H., Côté, A., Furukawa, H. et al. Zeolite A imidazolate frameworks. Nature Mater 6, 501–506 (2007). https://doi.org/10.1038/nmat1927

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1927

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing