Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tuneable elastomeric nanochannels for nanofluidic manipulation

Abstract

Fluidic transport through nanochannels offers new opportunities to probe fundamental nanoscale transport phenomena1,2,3,4,5 and to develop tools for manipulating DNA6,7,8,9,10,11,12,13,14,15,16, proteins17,18, small molecules19,20 and nanoparticles21,22. The small size of nanofabricated devices and the accompanying increase in the effect of surface forces23,24, however, pose challenges in designing and fabricating flexible nanofluidic systems that can dynamically adjust their transport characteristics according to the handling needs of various molecules and nanoparticles. Here, we describe the use of nanoscale fracturing of oxidized poly(dimethylsiloxane) to conveniently fabricate nanofluidic systems with arrays of nanochannels that can actively manipulate nanofluidic transport through dynamic modulation of the channel cross-section. We present the design parameters for engineering material properties and channel geometry to achieve reversible nanochannel deformation using remarkably small forces. We demonstrate the versatility of the elastomeric nanochannels through tuneable sieving and trapping of nanoparticles, dynamic manipulation of the conformation of single DNA molecules and in situ photofabrication of movable polymeric nanostructures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Size-adjustable elastomeric nanochannels.
Figure 2: Fabrication of structurally stable elastomeric nanochannels.
Figure 3: Nanofluidic sample trafficking using tuneable size-selectivity and single-nanoparticle trapping.
Figure 4: DNA manipulation and in situ fabrication of movable nanostructures.

Similar content being viewed by others

References

  1. Chen, J. Y., Kutana, A., Collier, C. P. & Giapis, K. P. Electrowetting in carbon nanotubes. Science 310, 1480–1483 (2005).

    Article  CAS  Google Scholar 

  2. Pennathur, S. & Santiago, J. G. Electrokinetic transport in nanochannels. 2. Experiments. Anal. Chem. 77, 6782–6789 (2005).

    Article  CAS  Google Scholar 

  3. Pu, Q., Yun, J., Temkin, H. & Liu, S. Ion-enrichment and ion-depletion effect of nanochannel structures. Nano Lett. 4, 1099–1103 (2004).

    Article  CAS  Google Scholar 

  4. Eijkel, J. C. T., Bomer, J. G. & van den Berg, A. Osmosis and pervaporation in polyimide submicron microfluidic channel structures. Appl. Phys. Lett. 87, 114103 (2005).

    Article  Google Scholar 

  5. Garcia, A. L. et al. Electrokinetic molecular separation in nanoscale fluidic channels. Lab Chip 5, 1271–1276 (2005).

    Article  CAS  Google Scholar 

  6. Han, J. & Craighead, H. G. Separation of long DNA molecules in a microfabricated entropic trap array. Science 288, 1026–1029 (2000).

    Article  CAS  Google Scholar 

  7. Reccius, C. H., Mannion, J. T., Cross, J. D. & Craighead, H. G. Compression and free expansion of single DNA molecules in nanochannels. Phys. Rev. Lett. 95, 268101 (2005).

    Article  Google Scholar 

  8. Tegenfeldt, J. O. et al. The dynamics of genomic-length DNA molecules in 100-nm channels. Proc. Natl Acad. Sci. USA 101, 10979–10983 (2004).

    Article  CAS  Google Scholar 

  9. Guo, L. J., Cheng, X. & Chou, C.-F. Fabrication of size-controllable nanofluidic channels by nanoimprinting and its application for DNA stretching. Nano Lett. 4, 69–73 (2004).

    Article  CAS  Google Scholar 

  10. Foquet, M., Korlach, J., Zipfel, W., Webb, W. W. & Craighead, H. G. DNA fragment sizing by single molecule detection in submicrometer-sized closed fluidic channels. Anal. Chem. 74, 1415–1422 (2002).

    Article  CAS  Google Scholar 

  11. Campbell, L. C., Wilkinson, M. J., Manz, A., Camilleri, P. & Humphreys, C. J. Electrophoretic manipulation of single DNA molecules in nanofabricated capillaries. Lab Chip 4, 225–229 (2004).

    Article  CAS  Google Scholar 

  12. Reisner, W. et al. Statics and dynamics of single DNA molecules confined in nanochannels. Phys. Rev. Lett. 94, 196101 (2005).

    Article  Google Scholar 

  13. Fu, J. P., Schoch, R. B., Stevens, A. L., Tannenbaum, S. R. & Han, J. Y. A patterned anisotropic nanofluidic sieving structure for continuous-flow separation of DNA and proteins. Nature Nanotech. 2, 121–128 (2007).

    Article  CAS  Google Scholar 

  14. Craighead, H. G. Future lab-on-a-chip technologies for interrogating individual molecules. Nature 442, 387–393 (2006).

    Article  CAS  Google Scholar 

  15. Riehn, R., Austin, R. H. & Sturm, J. C. A nanofluidic railroad switch for DNA. Nano Lett. 6, 1973–1976 (2006).

    Article  CAS  Google Scholar 

  16. Riehn, R. et al. Restriction mapping in nanofluidic devices. Proc. Natl Acad. Sci. USA 102, 10012–10016 (2005).

    Article  CAS  Google Scholar 

  17. Wang, Y.-C., Stevens, A. L. & Han, J. Million-fold preconcentration of proteins and peptides by nanofluidic filter. Anal. Chem. 77, 4293–4299 (2005).

    Article  CAS  Google Scholar 

  18. Sivanesan, P., Okamoto, K., English, D., Lee, C. S. & DeVoe, D. L. Polymer nanochannels fabricated by thermomechanical deformation for single-molecule analysis. Anal. Chem. 77, 2252–2258 (2005).

    Article  CAS  Google Scholar 

  19. Jirage, K. B., Hulteen, J. C. & Martin, C. R. Nanotubule-based molecular filtration membranes. Science 278, 655–658 (1997).

    Article  CAS  Google Scholar 

  20. Lee, S. B. et al. Antibody-based bio-nanotube membranes for enantiomeric drug separations. Science 296, 2198–2200 (2002).

    Article  CAS  Google Scholar 

  21. Stavis, S. M., Edel, J. B., Samiee, K. T. & Craighead, H. G. Single molecule studies of quantum dot conjugates in a submicrometer fluidic channel. Lab Chip 5, 337–343 (2005).

    Article  CAS  Google Scholar 

  22. Drazer, G., Koplik, J. & Acrivos, A. Absorption phenomena in the transport of a colloidal particle through a nanochannel containing a partially wetting fluid. Phys. Rev. Lett. 89, 244501 (2002).

    Article  Google Scholar 

  23. Huang, Y. G. Y. et al. Stamp collapse in soft lithography. Langmuir 21, 8058–8068 (2005).

    Article  CAS  Google Scholar 

  24. Hui, C. Y., Jagota, A., Lin, Y. Y. & Kramer, E. J. Constraints on microcontact printing imposed by stamp deformation. Langmuir 18, 1394–1407 (2002).

    Article  CAS  Google Scholar 

  25. Zhu, X. Y. et al. Fabrication of reconfigurable protein matrices by cracking. Nature Mater. 4, 403–406 (2005).

    Article  CAS  Google Scholar 

  26. Bowden, N., Huck, W. T. S., Paul, K. E. & Whitesides, G. M. The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer. Appl. Phys. Lett. 75, 2557–2559 (1999).

    Article  CAS  Google Scholar 

  27. Schmid, H. & Michel, B. Siloxane polymers for high-resolution, high-accuracy soft lithography. Macromolecules 33, 3042–3049 (2000).

    Article  CAS  Google Scholar 

  28. Odom, T. W., Love, J. C., Wolfe, D. B., Paul, K. E. & Whitesides, G. M. Improved pattern transfer in soft lithography using composite stamps. Langmuir 18, 5314–5320 (2002).

    Article  CAS  Google Scholar 

  29. Decre, M. M. J., Timmermans, P. H. M., Sluis, O. & Schroeders, R. Numerical and experimental study of critical roof collapse conditions in soft lithography. Langmuir 21, 7971–7978 (2005).

    Article  CAS  Google Scholar 

  30. Beebe, D. J. et al. Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404, 588–590 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Mayer for comments on the manuscript, N. Futai for assistance in electrical resistance measurements, J. H. Bahng for help with channel fabrication and K. E. Sung for preparing DNA samples. We thank K. Naruse for the mechanical stretcher device. This work was supported by NSF, NIH and the NASA BioScience and Engineering Institute. D.H. acknowledges a Horace H. Rackham Predoctoral Fellowship from the University of Michigan.

Author information

Authors and Affiliations

Authors

Contributions

D.H. designed and fabricated the nanochannel systems, carried out the experiments, analysed the data and wrote the manuscript. K.L.M. conducted numerical simulations of nanochannel closure and helped to write the paragraphs describing the simulation results. X.Y.Z. helped to take AFM measurements of nanochannel cross-sections. M.A.B. helped to plan DNA stretching experiments and provided DNA samples. M.D.T. helped to design the simulation studies, interpreted simulation results and edited the manuscript. S.T. designed the project and edited the manuscript. All authors commented on the manuscript.

Corresponding author

Correspondence to Shuichi Takayama.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary methods and supplementary figures 1-6 (PDF 1040 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huh, D., Mills, K., Zhu, X. et al. Tuneable elastomeric nanochannels for nanofluidic manipulation. Nature Mater 6, 424–428 (2007). https://doi.org/10.1038/nmat1907

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1907

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing