Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dispensing and surface-induced crystallization of zeptolitre liquid metal-alloy drops

Abstract

The controlled delivery of fluids is a key process in nature and in many areas of science and technology, where pipettes or related devices are used for dispensing well-defined fluid volumes. Existing pipettes are capable of delivering fluids with attolitre (10−18 l) accuracy at best1. Studies on phase transformations of nanoscale objects would benefit from the controlled dispensing and manipulation of much smaller droplets. In contrast to nanoparticle melting whose fundamental pathway was studied extensively2, experiments on crystallization, testing classical nucleation theory3, are hindered by the influence of support interfaces. Experiments on free-standing fluid drops are extremely challenging4. Here, we demonstrate the operation of a pipette, which, observed by transmission electron microscopy, delivers a metal-alloy melt with zeptolitre (10−21 l) resolution. We use this exquisite control to produce nearly free-standing Au72Ge28 drops suspended by an atomic-scale meniscus at the pipette tip, and to image their phase transformations with near-atomic resolution. Our observations of the liquid–solid transition challenge classical nucleation theory3 by providing experimental evidence for an intrinsic crystallization pathway of nanometre-sized fluid drops that avoids nucleation in the interior, but instead proceeds via liquid-state surface faceting as a precursor to surface-induced crystallization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Building blocks and operation of the zeptolitre pipette.
Figure 2: Transient faceting of a 30 nm Au72Ge28 drop near the liquid–solid phase transition.
Figure 3: Fourier-transforms (FTs) of selected areas of TEM images in the transient faceting and crystallized states of a zeptolitre Au72Ge28 drop.
Figure 4: Comparison of frozen-in crystalline shapes of ‘free’ and ‘supported’ Au72Ge28 clusters.

Similar content being viewed by others

References

  1. Meister, A., Liley, M., Brugger, J., Pugin, R. & Heinzelmann, H. Nanodispenser for attoliter volume deposition using atomic force microscopy probes modified by focused-ion-beam milling. Appl. Phys. Lett. 85, 6260–6262 (2004).

    Article  CAS  Google Scholar 

  2. Frenken, J. W. M. & van der Veen, J. F. Observation of surface melting. Phys. Rev. Lett. 54, 134 (1985).

    Article  CAS  Google Scholar 

  3. Volmer, M. Kinetik der Phasenbildung (Steinkopff, Leipzig, 1939).

    Google Scholar 

  4. Egry, I., Lohoefer, G. & Jacobs, G. Surface tension of liquid metals: Results from measurements on ground and in space. Phys. Rev. Lett. 75, 4043 (1995).

    Article  CAS  Google Scholar 

  5. Predel, B. in Crystallographic and Thermodynamic Data of Binary Alloys—Electronic Materials and Semiconductors (ed. Madelung, O.) (Landolt-Bornstein, Group IV: Physical Chemistry, Vol. 5, Springer, Berlin, 1998).

    Google Scholar 

  6. Sutter, E. & Sutter, P. Au-induced encapsulation of Ge nanowires in protective carbon shells. Adv. Mater. 18, 2583 (2006).

    Article  CAS  Google Scholar 

  7. Gao, Y. & Bando, Y. Carbon nanothermometer containing gallium. Nature 415, 599 (2002).

    Article  CAS  Google Scholar 

  8. Sun, L. et al. Carbon nanotubes as high-pressure cylinders and nanoextruders. Science 312, 1199–1202 (2006).

    Article  CAS  Google Scholar 

  9. Banhart, F. Irradiation effects in carbon nanostructures. Rep. Prog. Phys. 62, 1181–1221 (1999).

    Article  CAS  Google Scholar 

  10. Sutter, E., Sutter, P. & Zhu, Y. Assembly and interaction of Au/C core-shell nanostructures: In situ observation in the transmission electron microscope. Nano Lett. 5, 2092–2096 (2005).

    Article  CAS  Google Scholar 

  11. Banhart, F., Hernández, E. & Terrones, M. Extreme superheating and supercooling of encapsulated metals in fullerenelike shells. Phys. Rev. Lett. 90, 185502 (2003).

    Article  CAS  Google Scholar 

  12. Iida, T. & Guthrie, R. I. L. The Physical Properties of Liquid Metals (Clarendon, Oxford, 1988).

    Google Scholar 

  13. Schmelzer, J. W., Zanotto, E. D. & Fokin, V. M. Pressure dependence of viscosity. J. Chem. Phys. 122, 074511 (2005).

    Article  Google Scholar 

  14. Moseler, M. & Landman, U. Formation, stability, and breakup of nanojets. Science 289, 1165 (2000).

    Article  CAS  Google Scholar 

  15. Turnbull, D. & Cech, R. E. Microscopic observation of the solidification of small metal droplets. J. Appl. Phys. 21, 804 (1950).

    Article  Google Scholar 

  16. Wulff, G. Zur frage der geschwindigkeit des wachstums und der auflösung der kristallflächen. Z. Kristall. Mineral. 34, 449 (1901).

    CAS  Google Scholar 

  17. Rice, S. A., Guidotti, D., Lemberg, H. L., Murphy, W. C. & Bloch, A. N. in Advances in Chemical Physics XXVII (eds Prigogine, I. R. & Rice, S. A.) (Wiley, Chichester, 1974) D’Evelyn, M. P. & Rice, S. A. A study of the liquid-vapor interface of mercury: Computer simulation results. J. Chem. Phys. 78, 5225 (1983).

    Google Scholar 

  18. Regan, M. J. et al. Surface layering in liquid gallium: An x-ray reflectivity study. Phys. Rev. Lett. 75, 2498 (1995).

    Article  CAS  Google Scholar 

  19. Shpyrko, O. G. et al. Atomic-scale surface demixing in a eutectic liquid BiSn alloy. Phys. Rev. Lett. 95, 106103 (2005).

    Article  Google Scholar 

  20. Shpyrko, O. G. et al. Surface crystallization in a liquid AuSi alloy. Science 313, 77–80 (2006).

    Article  CAS  Google Scholar 

  21. Celestini, F., Ercolessi, F. & Tosatti, E. Can liquid metal surfaces have hexatic order? Phys. Rev. Lett. 78, 3153 (1997).

    Article  CAS  Google Scholar 

  22. Ajayan, P. M. & Marks, L. D. Quasimelting and phases of small particles. Phys. Rev. Lett. 60, 585 (1988).

    Article  CAS  Google Scholar 

  23. Cleveland, C. L. et al. Structural evolution of smaller gold nanocrystals: The truncated decahedral motif. Phys. Rev. Lett. 79, 1873 (1997).

    Article  CAS  Google Scholar 

  24. Nam, H.-S., Hwang, N. M., Yu, B. D. & Yoon, J.-K. Formation of an icosahedral structure during the freezing of gold nanoclusters: Surface-induced mechanism. Phys. Rev. Lett. 89, 275502 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

This work was carried out under the auspices of the US Department of Energy, under contract No. DE-AC02-98CH1-886.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eli A. Sutter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary movie (AVI 4818 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sutter, P., Sutter, E. Dispensing and surface-induced crystallization of zeptolitre liquid metal-alloy drops. Nature Mater 6, 363–366 (2007). https://doi.org/10.1038/nmat1894

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1894

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing